序言
前言
第1篇 数据治理基础篇
第1章 数据治理
1.1 数据治理及框架
1.1.1 数据治理框架核心内容
1.1.2 数据治理框架创建策略
1.1.3 数据治理与数据管理的区别
1.2 数据治理的误区
1.2.1 误区一:数据文化变革问题
1.2.2 误区二:数据治理由IT驱动
1.2.3 误区三:数据治理成熟度问题
1.2.4 误区四:把数据治理作为项目
1.2.5 误区五:与组织战略不一致
1.2.6 误区六:忽视组织数据架构
1.2.7 误区七:未能与业务有效融合
1.2.8 误区八:采用颠覆式方法
1.2.9 误区九:遵从评估项的方法
1.2.10 误区十:认为有了工具就能实现数据治理
1.3 数据治理的趋势
1.3.1 趋势一:数据治理要从企业级视角出发加强总体规划
1.3.2 趋势二:企业必须建立企业级的数据标准体系
1.3.3 趋势三:企业亟须构建基于闭环管理的数据质量体系
1.3.4 趋势四:亟须构建基于法律法规遵从的数据安全体系
1.3.5 趋势五:构建基于战略价值实现的数据指标体系
1.3.6 趋势六:加速构建从需求到价值实现的数据运营链条
1.3.7 趋势七:构建基于治理的一体化数据资产价值实现平台
1.3.8 趋势八:强化数据要素生产力动能转换体系
第2章 数据战略
2.1 数据战略概述
2.1.1 数据战略的作用
2.1.2 数据战略的依据
2.1.3 数据战略的关键
2.1.4 数据战略的内容
2.2 数据战略关键问题
2.2.1 需要解决什么问题
2.2.2 需要哪些数据
2.2.3 如何分析这些数据
2.2.4 如何呈现这些数据
2.2.5 需要哪些软件和硬件
2.2.6 是否具有可行性计划
2.3 制定数据战略步骤
2.3.1 数据战略目的
2.3.2 数据战略示例
2.3.3 数据战略价值
2.3.4 创建数据战略的步骤
2.4 数据战略核心要素
2.4.1 DAMA数据管理知识体系中的数据战略
2.4.2 DCMM数据管理能力成熟度评估模型中的数据战略
2.4.3 DGI数据治理框架中的数据战略
2.4.4 数据战略内容分析
2.4.5 数据战略规划的关键要素
第3章 数据架构
3.1 现代数据架构如何驱动业务
3.1.1 什么是数据架构
3.1.2 现代数据架构的特点
3.1.3 数据架构与信息架构
3.1.4 开发数据架构的要点
3.1.5 数据架构是IT和业务的桥梁
3.2 如何构建现代数据体系架构
3.2.1 需求推动数据架构发展
3.2.2 现代数据架构的原理
3.2.3 湖仓一体架构解决方案
3.2.4 建设数据湖的重要提示
3.2.5 如何更好地构建数据湖
3.3 实现持续智能的数据架构
3.3.1 持续智能是数据运营的基础
3.3.2 如何构建持续智能数据架构
第4章 主数据管理
4.1 主数据概述
4.1.1 概述
4.1.2 判定主数据的因素
4.1.3 为什么要管理主数据
4.1.4 如何进行主数据管理
4.2 主数据管理
4.2.1 主数据的定义和关键概念
4.2.2 主数据管理原则
4.2.3 标准与指引
4.3 主数据建设
4.3.1 主数据项目启动前的准备
4.3.2 主数据建设协同推进
4.3.3 主数据建设应注意的问题
4.4 主数据建设案例:物料主数据建设
4.4.1 物料主数据存在的主要问题
4.4.2 物料主数据出现问题的原因
4.4.3 物料主数据的管控措施
4.4.4 物料主数据管理的启示
第5章 元数据管理
5.1 什么是元数据
5.1.1 数据元
5.1.2 元数据
5.1.3 主数据
5.1.4 数据元标准的内容
5.2 什么是元数据管理
5.2.1 元数据管理概述
5.2.2 元数据管理治理
5.2.3 元数据管理优秀实践
5.3 元数据管理的意义
5.3.1 元数据的关键作用
5.3.2 元数据管理的好处
5.3.3 自动化管理元数据
5.4 元数据管理和主数据管理的区别
5.4.1 概述
5.4.2 元数据管理与主数据管理
5.4.3 元数据与主数据管理的交集
5.4.4 元数据管理与主数据管理的差异
5.4.5 元数据管理和主数据管理案例
5.4.6 制定策略的重要性
5.5 元数据管理及应用
5.5.1 元数据管理、主数据管理、数据标准管理的关系
5.5.2 基于元数据的数据管理
5.5.3 指标元数据的应用实践
5.5.4 元数据管理的探索与实践
第6章 数据建模
6.1 数据建模是理解数据的基础
6.1.1 什么是数据建模
6.1.2 数据模型的类型
6.1.3 数据建模的过程
6.1.4 数据模型的类型
6.1.5 数
展开