搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
有限域手册(英文)/国外优秀数学著作原版系列
0.00     定价 ¥ 178.00
图书来源: 浙江图书馆(由浙江新华配书)
此书还可采购25本,持证读者免费借回家
  • 配送范围:
    浙江省内
  • ISBN:
    9787560398167
  • 作      者:
    编者:(美)盖里·L.马伦//(加)丹尼尔·帕纳里约|责编:刘立娟
  • 出 版 社 :
    哈尔滨工业大学出版社
  • 出版日期:
    2022-05-01
收藏
内容介绍
本书主要介绍了有限域的理论和应用,通过有限域的历史和导论引入了其理论性质,介绍了不可约多项式、本原多项式等,还介绍了有限域上的一些性质,包括有限域上的特殊函数、有限域上的序列、有限域上的曲线等,阐述了代数编码理论、密码学及应用等内容,以及有限域在组合数学、代数编码理论、密码学系统、生物学、量子信息理论、工程以及其他领域的各种数学和实际应用。本书提供了一个综合的索引,包括3000多条文献,读者可以快速找到最新的有关于有限域的事实与结论。
展开
目录
Part I: Introduction
1 History of finite fields
1.1 Finite fields in the 18-th and 19-th centuries Roderick Gow
1.1.1 Introduction
1.1.2 Early anticipations of finite fields
1.1.3 Gauss's Disquisitiones Arithmeticae
1.1.4 Gauss's Disquisitiones Generales de Congruentiis
1.1.5 Galois's Sur la theorie des nombres
1.1.6 Serret's Cours d'algebre superieure
1.1.7 Contributions of SchSnemann and Dedekind
1.1.8 Moore's characterization of abstract finite fields
1.1.9 Later developments
2 Introduction to finite fields
2.1 Basic properties of finite fields Gary L. Mullen and Daniel Panario
2.1.1 Basic definitions
2.1.2 Fundamental properties of finite fields
2.1.3 Extension fields
2.1.4 Trace and norm functions
2.1.5 Bases
2.1.6 Linearized polynomials
2.1.7 Miscellaneous results
2.1.7.1 The finite field polynomial Φ function
2.1.7.2 Cyclotomic polynomials
2.1.7.3 Lagrange interpolation
2.1.7.4 Discriminants
2.1.7.5 Jacobi logarithms
2.1.7.6 Field-like structures
2.1.7.7 Galois rings
2.1.8 Finite field related books
2.1.8.1 Textbooks
2.1.8.2 Finite field theory
2.1.8.3 Applications
2.1.8.4 Algorithms
2.1.8.5 Conference proceedings
2.2 Tables David Thomson
2.2.1 Low-weight irreducible and primitive polynomials
2.2.2 Low-complexity normal bases
2.2.2.1 Exhaustive search for low complexity normal bases
2.2.2.2 Minimum type of a Gauss period admitting a normal basis of F2n over F2
2.2.2.3 Minimum-known complexity of a normal basis of F2n over F2, n ≥ 40
2.2.3 Resources and standards
Part II: Theoretical Properties
3 Irreducible polynomials
3.1 Counting irreducible polynomials Joseph L. Yucas
3.1.1 Prescribed trace or norm
3.1.2 Prescribed coefficients over the binary field
3.1.3 Self-reciprocal polynomials
3.1.4 Compositions of powers
3.1.5 Translation invariant polynomials
3.1.6 Normal replicators
3.2 Construction of irreducibles Melsik Kyuregyan
3.2.1 Construction by composition
3.2.2 Recursive constructions
3.3 Conditions for reducible polynomials Daniel Panario
3.3.1 Composite polynomials
3.3.2 Swan-type theorems
3.4 Weights of irreducible polynomials Omran Ahmadi
3.4.1 Basic definitions
3.4.2 Existence results
3.4.3 Conjectures
3.5 Prescribed coefficients Stephen D. Cohen
3.5.1 One prescribed coefficient
3.5.2 Prescribed trace and norm
3.5.3 More prescribed coefficients
3.5.4 Further exact expressions
3.6 Multivariate polynomials Xiang-dong Hou
3.6.1 Counting formulas
3.6.2 Asymptotic formulas
3.6.3 Results for the vector degree
3.6.4 Indecomposable polynomials and irreducible polynomials
3.6.5 Algorithms for the gcd of multivariate polynomials
4 Primitive polynomials
4.1 Introduction to primitive polynomials Gary L. Mullen and Daniel Panario
4.2 Prescribed coefficients Stephen D. Cohen
4.2.1 Approaches to results on prescribed coefficients
4.2.2 Existence theorems for primitive polynomials
4.2.3 Existence theorems for primitive normal polynomials
4.3 Weights of primitive polynomials Stephen D. Cohen
4.4 Elements of high order Jose Felipe Voloch
4.4.1 Elements of high order from elements of small orders
4.4.2 Gao's construction and a generalization
4.4.3 Iterative constructions
5 Bases
5.1 Duality theory of bases Dieter Jungnickel
5.1.1 Dual bases
5.1.2 Self-dual bases
5.1.3 Weakly self-dual bases
5.1.4 Binary bases with small excess
5.1.5 Almost weakly
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证