搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
古典微分几何
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787312045738
  • 作      者:
    徐森林[等]著
  • 出 版 社 :
    中国科学技术大学出版社
  • 出版日期:
    2019
收藏
内容介绍
  《古典微分几何/微分几何与拓扑学》共3章。第1章讨论了曲线的曲率、挠率、Frenet公式、Bouquet公式等局部性质,证明了曲线论的基本定理,还讨论了曲线的整体性质:4顶点定理、Minkowski定理、Fenchel定理以及Fary-Milnor关于纽结的全曲率不等式。第2章引入了曲面第1基本形式、曲面第2基本形式、Gauss(总)曲率、平均曲率、Weingarten映射、主曲率、曲率线、测地线等重要概念,给出了曲面的基本公式和基本方程、曲面论的基本定理以及著名的Gauss绝妙定理等曲面的局部性质。第3章详细论述了曲面的整体性质,得到了全脐超曲面定理、球面的刚性定理、极小曲面的Bernstein定理、著名的Gauss—Bonnet公式以及Poincar6指标定理-《古典微分几何/微分几何与拓扑学》既可作为综合性大学、理工科大学、师范类大学数学系高年级大学生的学习参考书,也可作为大学数学教师和研究人员的教学、研究参考书。
展开
目录
序言
前言
第1章 曲线论
1.1 Cr正则曲线、切向量、弧长参数
1.2 曲率、挠率
1.3 Frenet标架、Frenet公式
1.4 Bouquet公式、平面曲线相对曲率
1.5 曲线论的基本定理
1.6 曲率圆、渐缩线、渐伸线
1.7 曲线的整体性质(4顶点定理、Minkowski定理、Fenchel定理)

第2章 Rn中良维Cr曲面的局部性质
2.1 曲面的参数表示、切向量、法向量、切空间、法空间
2.2 旋转面(悬链面、正圆柱面、正圆锥面)、直纹面、可展曲面(柱面、锥面、切线面)
2.3 曲面的**基本形式与第2基本形式
2.4 曲面的基本公式、Weingarten映射、共轭曲线网、渐近曲线网
2.5 法曲率向量、测地曲率向量、:Euler‘公式、主曲率、曲率线
2.6 Gauss曲率(总曲率)KG、平均曲率H
2.7 常Gauss曲率的曲面、极小曲面(H=0)
2.8 测地曲率、测地线、测地曲率的Liouville公式
2.9 曲面的基本方程、曲面论的基本定理、Gauss*妙定理
2.10 Riemann流形、Levi-Civita联络、向量场的平行移动、测地线
2.11 正交活动标架

第3章 曲面的整体性质
3.1 紧致全脐超曲面、球面的刚性定理
3.2 极小曲面的Bernstein定理
3.3 Gauss-Bonnet公式
3.4 2维紧致定向流形M的Poincare切向量场指标定理
参考文献
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证