《古典微分几何/微分几何与拓扑学》共3章。第1章讨论了曲线的曲率、挠率、Frenet公式、Bouquet公式等局部性质,证明了曲线论的基本定理,还讨论了曲线的整体性质:4顶点定理、Minkowski定理、Fenchel定理以及Fary-Milnor关于纽结的全曲率不等式。第2章引入了曲面第1基本形式、曲面第2基本形式、Gauss(总)曲率、平均曲率、Weingarten映射、主曲率、曲率线、测地线等重要概念,给出了曲面的基本公式和基本方程、曲面论的基本定理以及著名的Gauss绝妙定理等曲面的局部性质。第3章详细论述了曲面的整体性质,得到了全脐超曲面定理、球面的刚性定理、极小曲面的Bernstein定理、著名的Gauss—Bonnet公式以及Poincar6指标定理-《古典微分几何/微分几何与拓扑学》既可作为综合性大学、理工科大学、师范类大学数学系高年级大学生的学习参考书,也可作为大学数学教师和研究人员的教学、研究参考书。
展开