精彩片段
第1 章 质点运动学
在开始研讨经典力学时,很自然地应该先思考各种可能的运动样式,而暂时不将任何造成运动的因素纳入考量.这初步探寻的知识就是运动学的学术领域.
——埃德蒙•维特克
物理学是研究物质运动中最普遍、最基本运动形式的基本规律的一门学科,这些运动形式包括机械运动(mechanical motion)、分子热运动(thermal motion)、电磁(electromagnet)运动、原子(atom)和原子核(nucleus)运动以及其他微观粒子(microparticle)运动等.机械运动是这些运动中最简单、最常见的运动形式,其基本形式有平动(translation motion)和转动(rotary motion).物体在平动过程中,若物体内各点的位置没有发生相对变化,那么各点所移动的路径完全相同,可用物体上任一点的运动来代表整个物体的运动,从而可研究物体随时间而改变的情况.在力学(mechanics)中,这部分内容称为质点运动学(kinematics of particle).
Kinematics is a branch of classical mechanics devoted to the study of motion, but not the cause of the motion. As such it is concerned with the various types of motions.
Two classes of motion covered by kinematics are uniform motion and non-uniform motion. A body is said to be in uniform motion when it travels equal distances in equal intervals of time(
i. e. at a constant speed). For example, a body travels 5 km in1 hour and another 5 km in the next hour, and so on continuously. Uniform motion is closely associated with inertia as described in Newton’s first law of motion. However, most familiar types of motion would be non-uniform motion, as most bodies are constantly being acted upon by many different force simultaneously, as such they do not travel equal distances in equal intervals of time.
1.1 基本概念
Like all other sciences, physics is based on experimental observations and quantitative measurements. The main objective of physics is to find the limited number of fundamental laws that govern natural phenomena and to use the laws to develop theories that can predict the results of future experiments. The fundamental laws used in developing theories are expressed in the language of mathematics, the tool that provides a bridge between theory and experiment.
一些物理量(physical quantities)的数学关系式称为物理定律(physical law).大多数物理量为导出量(derived quantities),即它们可以由少数基本量(basic quantities)的组合来表示.
力学中基本量有三个:长度(length)、质量(mass)和时间(time).
1960年,国际组织为基本物理量建立了一组标准,称为SI(国际单位制,International System of Units),其中长度、质量和时间的单位分别为米(meter)、千克(kilogram)和秒(second).
1.1.1 长度
直到1960年,人们一直将保存在法国的铂铱合金棒在0℃时两条刻线间的距离定义为1米.1983年,1米定义为光在真空中1/299792458秒的时间间隔内运行路程的长度(The meter is the length of the path traveled by light in vacuum during a time interval of 1/299792458second).
…… …….
【课外知识】 国际单位制的长度单位“米”(meter, metre)起源于法国.1790年5月由法国科学家组成的特别委员会,建议以通过巴黎的地球子午线全长的四千万分之一作为长度单位———米,1791年获法国国会批准.为了制造出表征米的量值的基准器,在法国天文学家捷梁布尔和密伸的领导下,于1792—1799年,对法国敦克尔克至西班牙的巴塞罗那进行了测量.1799年根据测量结果制成一根3.5毫米×25毫米短形截面的铂杆(platinum metrebar),把此杆两端之间的距离定为1米,并交法国档案局保管,所以也称为“档案米”.这就是最早的米定义.由于档案米的变形情况严重,于是,1872年放弃了“档案米”的米定义,而以铂铱合金(90%的铂和10%的铱)制造的米原器作为长度的单位.米原器是根据“档案米”的长度制造的,当时共制出了31只,截面近似呈X形,把档案米的长度以两条宽度为6~8微米的刻线刻在尺子的凹槽(中性面)上(图1.1).1889年在第一次国际计量大会上,把经国际计量局鉴定的第6号米原器(31只米原器中在0℃时最接近档案米的长度的一只)选作国际米原器,并作为世界上最有权威的长度基准器保存在巴黎国际计量局的地下室中,其余的尺子作为副尺分发给与会各国.规定在周围空气温度为0℃时,米原器两端中间刻线之间的距离为1米.1927年第七届国际计量大会又对米定义作了严格的规定,除温度要求外,还提出了米原器须保存在1标准大气压下,并对其放置方法作出了具体规定.
但是使用米原器作为米的客观标准也存在很多缺点,如材料变形,测量精度不高(只能达0.1μm),很难满足计量学和其他精密测量的需要.另外,万一米原器损坏,复制将无依据,特别是复制品很难保证与原器完全一致,给各国使用带来了困难.因此,采用自然量值作为单位基准器的设想一直为人们所向往.20世纪50年代,随着同位素光谱光源的发展, 发现了宽度很窄的氪—86同位素谱线,加上干涉技术的成功,人们终于找到了一种不易毁坏的自然标准,即以光波波长作为长度单位的自然基准.1960年第十一届国际计量大会对米的定义作了如下更改:“米的长度等于氪—86原子的2P10和5d1能级之间跃迁的辐射在真空中波长的1650763.73倍”.这一自然基准,性能稳定,没有变形问题,容易复现,而且具有很高的复现精度.我国于1963年也建立了氪—86同位素长度基准.米的定义更改后,国际米原器仍按原规定保存在国际计量局.
随着科学技术的进步,70年代以来,对时间和光速的测定,都达到了很高的精确度.因此,1983年10月在巴黎召开的第十七届国际计量大会上又通过了米的新定义:“米是1/299792458秒的时间间隔内光在真空中行程的长度”.这样,基于光谱线波长的米的定义就被新的米定义所替代了.
展开