本书全书共分4章。第1章主要介绍集合论的基本知识、几个重要的集类。着重用势研究实函数。详细论证了Baire定理,并给出了它的应用。第2章和第3章比较完整地阐明一般测度理论和积分理论。突出描述了Lebesgue测度与Lebesgue积分理论,以及LebesgueStieltjes测度与LebesgueStieltjes积分理论。第4章引进了Banach空间(Lp,‖·‖p)(p≥1)和Hilbert空间(L2,〈,〉)并证明了一些重要定理。书中配备了大量的例题、练习题和复习题,可以训练学生分析问题和解决问题的能力,帮助他们打下分析数学和测度论方面扎实的数学基础。
本书可作为综合性大学、理工科大学和师范类院校的基础数学、应用数学、概率统计和计算数学专业的教材或自学参考书。
展开