描述线性算子的结构是线性代数的中心任务之一,传统的方法多以行列式为工具,但是行列式既难懂又不直观,其定义的引入也往往缺乏动因。本书作者独辟蹊径,抛弃了这种曲折的思路,把重点放在抽象的向量空间和线性映射上,给出的证明不使用行列式,更显得简单而直观。本书把行列式的内容放在了最后讲解,开辟了一条理解线性算子结构的新途径。书中还对一些术语、结论、证明思路、提及的数学家做了注释,增加了行文的趣味性,便于读者掌握核心概念和思想方法。
《线性代数应该这样学(第2版)》起点较低,不需要太多预备知识,而且特色鲜明,是公认的阐述线性代数的经典佳作。原书自出版以来,迅速风靡世界,在30多个国家为200多所高校所采用,其中包括斯坦福大学和加大学伯克利分校等著名学府。
《线性代数应该这样学(第2版)》强调抽象的向量空间和线性映射,内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等,本书在内容编排和处理方法上与国内通行的做法大不相同,它完全抛开行列式,采用更直接、更简捷的方法阐述了向量空间和线性算子的基本理论。书中对一些术语、结论、数学家、证明思想和启示等做了注释,不仅增加了趣味性,还加强了读者对一些概念和思想方法的理解。
《线性代数应该这样学(第2版)》起点低,无需线性代数方面的预备知识即可学习,非常适合作为教材,另外、本书方法新颖,非常值得相关教师和科研人员参考。
第1章 向量空间1
S1.1 复数2
S1.2 向量空间的定义4
S1.3 向量空间的性质11
S1.4 子空间13
S1.5 和与直和14
习题19
第2章 有限维向量空间21
S2.1 张成与线性无关22
S2.2 基27
S2.3 维数31
习题35
第3章 线性映射37
S3.1 定义与例子38
S3.2 零空间与值域41
S3.3 线性映射的矩阵48
S3.4 可逆性53
习题59
第4章 多项式63
S4.1 次数64
S4.2 复系数67
S4.3 实系数68
习题73
第5章 本征值与本征向量75
S5.1 不变子空间76
S5.2 多项式对算子的作用80
S5.3 上三角矩阵81
S5.4 对角矩阵87
S5.5 实向量空间的不变子空间91
习题94
第6章 内积空间97
S6.1 内积98
S6.2 范数102
S6.3 规范正交基106
S6.4 正交投影与极小化问题111
S6.5 线性泛函与伴随117
习题122
第7章 内积空间上的算子127
S7.1 自伴算子与正规算子128
S7.2 谱定理132
S7.3 实内积空间上的正规算子138
S7.4 正算子144
S7.5 等距同构147
S7.6 极分解与奇异值分解152
习题158
第8章 复向量空间上的算子163
S8.1 广义本征向量164
S8.2 特征多项式168
S8.3 算子的分解173
S8.4 平方根177
S8.5 极小多项式179
S8.6 约当形183
习题188
第9章 实向量空间上的算子193
S9.1 方阵的本征值194
S9.2 分块上三角矩阵195
S9.3 特征多项式198
习题210
第10章 迹与行列式213
S10.1 基变换214
S10.2 迹216
S10.3 算子的行列式222
S10.4 矩阵的行列式225
S10.5 体积236
习题244
符号索引247
索引248
——《美国数学月刊》
★“总之,本书真是一部循循善诱的杰作。”
——《数学公报》