搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
近代回归分析方法
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787030327956
  • 作      者:
    梅长林,王宁编著
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2012
收藏
内容介绍
  《近代回归分析方法》结合SAS软件的应用介绍了从线性回归分析到近三十多年来迅速发展起来的非参数回归分析中几类具有代表性的回归模型的估计和统计推断方法,具体内容包括线性回归模型的*小二乘估计、广义线性模型的似然估计、非参数回归模型的核光滑方法、变系数模型的局部线性估计、广义变系数模型的局部似然估计以及空间变系数模型的地理加权回归估计,并简要介绍了SAS软件的基础知识和相关的SAS过程。
  《近代回归分析方法》可作为高等院校统计、经济、医学及相关专业的研究生教材,也可供科研人员及数据分析应用工作者参考。
展开
目录
前言

第1章 线性回归模型
1.1 引言
1.2 线性回归模型及其最小二乘估计
1.2.1 线性回归模型及其矩阵表示
1.2.2 参数的最小二乘估计
1.2.3 最小二乘估计的性质
1.2.4 参数的线性约束最小二乘估计
1.3 离差平方和的分解与参数的假设检验
1.3.1 离差平方和的分解与复决定系数
1.3.2 参数线性约束关系的检验
1.3.3 回归关系的显著性检验
1.3.4 回归系数的显著性检验
1.4 回归诊断与改进措施
1.4.1 残差分析
1.4.2 因变量的Box-Cox变换
1.4.3 自变量复共线性诊断
1.4.4 参数的岭估计及其性质
1.5 因变量的预测

第2章 广义线性模型
2.1 引言
2.2 指数族分布与广义线性模型
2.2.1 指数族分布
2.2.2 连接函数
2.2.3 广义线性模型
2.3 广义线性模型的最大似然估计
2.3.1 参数的似然方程
2.3.2 似然方程的迭代加权最小二乘解法
2.3.3 似然方程的Newton-Raphson迭代法和Fisher标分法
2.4 广义线性模型的统计推断
2.4.1 参数的最大似然估计的渐近分布
2.4.2 参数的假设检验
2.5 广义线性模型应用举例

第3章 非参数回归模型
3.1 非参数回归模型及其局部拟合思想
3.2 局部常数拟合方法
3.2.1 Nadaraya-Watson估计及其性质
3.2.2 Gasser-Muller估计及其性质
3.3 局部多项式拟合方法
3.3.1 局部多项式估计
3.3.2 局部多项式估计的性质
3.3.3 等价核及局部多项式估计的偏与方差的等价核表示
3.3.4 局部多项式光滑中多项式阶的选取
3.3.5 均方误差准则下局部多项式拟合的最优光滑参数
3.4 光滑参数的确定
3.4.1 局部多项式拟合中光滑参数确定的一个经验方法
3.4.2 交叉确认及其相关方法
3.5 误差方差的估计
3.5.1 误差方差为常数时的估计
3.5.2 误差方差为自变量函数时的估计
3.6 局部拟合在线性回归模型残差分析中的应用举例
3.6.1 残差趋势性分析的假设检验
3.6.2 模拟试验
3.6.3 实例分析
3.7 多元非参数回归模型及其维数灾难问题

第4章 变系数模型与广义变系数模型
4.1 变系数模型与其他相关模型
4.2 变系数模型的拟合及其推断
4.2.1 变系数模型的局部线性估计
4.2.2 局部线性估计的渐近偏与方差
4.2.3 变系数模型的二步估计
4.2.4 系数函数的置信带与假设检验
4.3 半变系数模型及其拟合方法
4.3.1 半变系数模型的二阶段估计及其渐近偏和方差
4.3.2 半变系数模型的轮廓最小二乘估计
4.3.3 半变系数模型的统计推断
4.4 广义变系数模型及其局部似然估计
4.4.1 广义变系数模型
4.4.2 广义变系数模型的局部线性似然估计
4.4.3 广义变系数模型的一步Newton-Raphson估计
……

第5章 空间变系数模型与地理加权回归估计
第6章 SAS软件基础知识与有关分析过程简介

参考文献
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证