对应的“理”也不可能是完全固定而不变的,即理的正确与否,也是相对和有一定的先决条件的。为了能把握住事物发展变化的规律与大方向,所以其找到了与事物的发展变化紧密相连的各种归纳、综合、分类、集群等的表述功能相适应的技术和处理及解决方法,藉以随时随地地都能把握住事物的规律,故而在此过程中,它相对来说是重“法”而轻“理”的。轻“理”不等于是没有“理”,否则中国的古代数学成果怎么可能在世界的数学史上遥遥领先呢?只不过是“中算家”们经常是把其依据的算理蕴涵在运算过程的步骤之中了而已。只是“不说自明”、“不证自明”和“不言而喻”罢了。比如,刘徽所著的《九章算术注》中主张“析理以辞,解体用图”。这里所说的“辞”,就是指逻辑与逻辑理性的推理过程及表述;“图”是指图形及其直观性分析。他同时也告诉我们,在数学的推导过程中,要把逻辑推理与直观的分析方法有机地结合起来,藉以论证数学结论的真实与确切性。此书之中,含有丰富的逻辑内容、数学概念和明确的定义。它所涉及的推理方法,既有归纳,又有演绎;不但有综合与分析法,还兼用了反证法。同时还促进与推广了“图论”的分析方法。那些认为“在古代中国的数学思想中,最大的缺点是缺少严格求证的思想”的人,是缺少根据而妄自菲薄才造成的这些误解。同时,也可以说明,中国的传统数学是具有自己独特的理论体系的,并且受“易学”中“易理”的“易简”、“极化”、“类化”、“集化”等思想的影响,由于是以理论的高度概括、精炼为其特征,其理又是为了建立在实际或实践中有直接应用价值的数学方法,因此才架构出了这些最简单、最精巧的理论构成——虽然它们还没有形成像欧几里得《几何原本》那样公理化的完整的演绎体系。尽管如此,我们也不能因此就认为中国古代数学没有逻辑思维与证明,恰恰相反,中国古代数学与数学家的推理方式与方法是极其丰富多彩的。同时,观察、综合、归纳与简捷,也是“中算家”们所具备的另一套推理方法与擅长,而“形”“数”结合与“寓理于算”,又是他们必定会自觉自愿且严格遵守的理论联系实际的职责。
展开