搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
工业数据分析工程(基于CRISP-DM的形式化方法)/数字化工厂与智能制造丛书
0.00     定价 ¥ 99.00
图书来源: 浙江图书馆(由浙江新华配书)
此书还可采购25本,持证读者免费借回家
  • 配送范围:
    浙江省内
  • ISBN:
    9787111759799
  • 作      者:
    作者:田春华//解光耀//裴忠一//韩洁//王伟等|责编:吕潇//赵玲丽
  • 出 版 社 :
    机械工业出版社
  • 出版日期:
    2024-09-01
收藏
内容介绍
在“数据资产化”“工业互联网”“工业大数据”的推进中,工业大数据分析仍缺乏统一的指导方法,造成工业大数据分析项目质量波动大,落地成功率低。CRISP-DM方法是机器学习领域的行业事实标准,但CRISP-DM仅仅是过程方法,对于每个阶段或关键活动,没有给出具体的行动指导。本书在CRISP-DM基础上,细化了工业数据分析中的具体活动,针对关键活动提出了明确的形式化方法(例如,用系统动力学模型刻画工业物理系统的运行机理,用领域模型描述物理系统间的概念关系,用数据处理流图描述分析模型间的数据处理和依赖关系),并用具体的行业案例进行阐述,尝试为工业大数据分析构建一套实操性的工程方法体系。 本书分为10章:第1章概要介绍工业数据分析方法体系;第2~7章讨论了分析场景定义、业务理解、数据理解、数据准备、模型建立、模型评估和模型部署7个阶段的关键活动、关键角色和成功标准,给出实操形式化方法,并用具体工业案例进行展示;第8~10章用3个不同类型行业案例,端到端展示了工业数据分析方法的应用过程。本书是实操性方法的系统总结,用实际案例将读者代入,更好地理解问题的挑战和解决过程,在此基础上,进行系统化总结,方便方法的传承。 本书适合工业大数据从业者,包括工业大数据/工业互联网企业的研发人员、工业企业IT部门及数字化转型部门的工程技术人员阅读,也适合高等或职业院校的大数据或工业互联网相关专业的教师和学生阅读。
展开
目录
前言
第1章 工业数据分析方法概述
1.1 方法论内涵与作用
1.2 工业大数据项目落地的载体
1.2.1 工业数据分析的3种载体形式:数据服务、模型服务、智能应用
1.2.2 工业大数据项目的价值落地
1.2.3 智能化项目管理
1.3 工业数据分析过程方法
1.4 如何用好工业数据分析方法
1.4.1 大数据分析方法的应用范畴
1.4.2 大数据分析方法与项目管理
1.4.3 大数据分析项目阶段划分
参考文献
第2章 分析场景定义
2.1 什么是分析场景
2.2 分析场景识别
2.2.1 自顶向下的结构化分解法
2.2.2 自下向上的归纳剖析法
2.2.3 数据驱动的业务能力匹配法
2.2.4 分析场景识别中的常见问题
2.3 分析场景筛选
2.3.1 基于基线思维的场景筛选法
2.3.2 基于要素-认知矩阵的场景筛选法
2.3.3 分析场景筛选中的常见问题
2.4 分析场景定义示例
2.4.1 智能运维:自顶向下的结构化分解法
2.4.2 汽车制造:自下向上的归纳剖析法
2.4.3 电动矿卡智能管理:数据驱动的业务能力匹配法
参考文献
第3章 业务理解
3.1 业务理解的目标
3.1.1 形成分析课题描述
3.1.2 提出数据需求清单
3.2 业务理解的主要内容
3.2.1 决策逻辑
3.2.2 决策场景
3.2.3 领域概念
3.3 业务理解的形式化模型
3.3.1 层次分解模型——列表
3.3.2 层次分解模型——树状结构
3.3.3 系统动力学模型
3.3.4 专家规则
3.3.5 运筹学模型
3.4 系统动力学的建模方法
3.4.1 系统动力学的建模过程
3.4.2 系统动力学建模背后的支撑技术
3.4.3 系统动力学模型的概念辨析
3.5 专家规则的建模方法
3.5.1 基于规则流的规则描述方法
3.5.2 基于逻辑表达式的规则检验方法
3.6 领域模型的建模方法
3.6.1 数据驱动的领域建模
3.6.2 业务驱动的领域建模
3.7 业务理解的执行策略
3.7.1 了解性访谈
3.7.2 基于样例数据的业务理解
3.7.3 确认性访谈
3.8 思考:业务理解中形式化模型的必要性
3.8.1 水箱水位预测的例子
3.8.2 发电机冷却水温度区间估计的例子
参考文献
第4章 数据理解
4.1 数据收集
4.1.1 明确数据源系统和访问方式
4.1.2 明确数据更新与存储周期
4.2 数据描述——数据集层面的理解
4.2.1 样本数据的人工阅读
4.2.2 数据概览
4.2.3 领域模型与数据模型交互理解
4.3 数据探索——数据字段层面的理解
4.3.1 统计分布
4.3.2 数据可视化
4.4 数据探索——业务层面的理解
4.4.1 业务维度组合的探索(基于领域模型)
4.4.2 业务过程理解(基于系统动力学模型)
4.4.3 专家知识的复现
4.5 数据质量审查
4.5.1 示例案例
4.5.2 基于领域模型的质量审查方法
4.5.3 分析项目中数据质量突出的原因
4.5.4 数据质量评价与影响分析
4.6 数据理解阶段的执行策略
4.6.1 执行路径
4.6.2 软件工具
4.6.3 典型的数据处理技巧
参考文献
第5章 数据准备
5.1 数据流设计
5.1.1 数据仓库建模
5.1.2 领域模型驱动的工业数据组织方法
5.1.3 工业数据分析的数据流图
5.1.4 分析数据流图示例
5.2 数据选择与清洗
5.3 数据融合
5.4 特征提取与选择
5.4.1 特征的来源
5.4.2 特征提取的推进思路
5.5 数据资源化:数据分析师的视角
参考文献
第6章 模型建立
6.1 常用算法及问题类型转换方法
6.2 目标变量的相关问题
6.2.1 目标变量的构建
6.2.2 目标变量变换
6.2.3 不均衡问题
6.3 预测变量的相关问题
6.3.1 工况切分
6.3.2 变量的离散化
6.3.3 移除没有业务意义的高相关特征量
6.3.4 特征变量组合
6.3.5 类别变量的完备度
6.4 工业分析建模问题
6.4.1 基准模型
6.4.2 大量测点的稳定过程建模
6.4.3 基于朴素道理的深度网络结构参数优化
6.4.4 时序分类问题
6.4.5 非监督学习问题
6.4.6 优化问题
6.4.7 评价型问题
6.4.8 浅机理、高维度的诊断型问题
6.5 机理模型与统计模型的结合方法
6.5.1 机理模型的范畴:定性与定量机理
6.5.2 统计模型与数学模型的4种融合范式
6.5.3 统计模型与仿真模型的2种融合模式
6.5.4 统计模型与经验性机理模型的融合
参考文献
第7章 模型评价与部署
7.1 模型评价的内容
7.2 技术评价
7.3 业务评价
7.4 下一步工作规划
7.5 模型部署的内容
7.6 部署包的设计
7.6.1 分析任务的逻辑审查
7.6.2 数据异常的影响分析与应对措施
7.6.3 分析模型打包
7.
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证