1.揭开人脑奥秘,群智算法助力功能划分。本书对面向fMRI数据的人脑功能划分现状进行了较为全面的综述,让您了解人脑功能的多样性和复杂性。
2.从静态到动态,掌握脑功能划分的前沿技术。详细介绍4种静态和1种动态功能划分方法,帮助您成为脑科学研究的先驱者,把握人脑功能划分的前沿进展!
3.对经典的免疫克隆算法、人工蜂群算法、粒子群算法、人工水母算法进行了描述和改进,将其用人脑的功能划分,并进行了实验对比;
4.采用清晰简洁的语言,结构清晰、文字流畅,使得读者能够轻松理解和消化书籍内容。无论您是专业人士还是学生,都能够轻松阅读,快速掌握书中的知识,提升学习效果和研究能力。
第 1章 绪论
1.1 研究背景与研究意义 2
1.2 人脑功能概述 4
1.2.1 人脑功能的物质基础 4
1.2.2 人脑的功能 6
1.2.3 人脑功能的特点 7
1.2.4 人脑功能的研究方法 8
1.3 群智能算法概述 10
1.3.1 群智能算法发展简史 10
1.3.2 群智能算法的特点 12
1.3.3 群智能算法在聚类中的应用 12
1.4 主要研究内容 14
1.4.1 面向fMRI数据的人脑功能划分进展 14
1.4.2 静态人脑功能划分方法 14
1.4.3 动态人脑功能划分方法 16
第 2章 面向fMRI数据的人脑功能划分进展
2.1 fMRI数据 18
2.1.1 fMRI的基本原理 18
2.1.2 fMRI数据的采集过程 18
2.1.3 fMRI数据的特点 20
2.1.4 fMRI数据的预处理过程 20
2.2 面向fMRI数据的人脑功能划分问题 21
2.2.1 基本概念 22
2.2.2 分类 22
2.2.3 基本流程 23
2.3 面向fMRI数据的人脑功能划分方法 24
2.3.1 面向fMRI数据的静态人脑功能划分方法 25
2.3.2 面向fMRI数据的动态人脑功能划分方法 33
2.4 常用功能一致性度量和评价指标 33
2.4.1 常用功能一致性度量 33
2.4.2 常用评价指标 35
2.5 面向fMRI数据的人脑功能划分应用 37
2.6 存在的问题 39
2.7 本章小结 42
第3章 基于免疫克隆选择算法搜索GMM的脑岛功能划分方法
3.1 基础内容 44
3.1.1 免疫克隆选择算法 44
3.1.2 高斯混合模型 45
3.1.3 脑岛及其功能划分 46
3.2 NICS-GMM描述 47
3.2.1 基本思想 47
3.2.2 抗体、抗原表示与适应度函数 48
3.2.3 初始化抗体种群和克隆抗体 48
3.2.4 计算动态邻域信息 48
3.2.5 混合克隆变异 50
3.2.6 NICS-GMM的具体流程与分析 51
3.3 实验结果与分析 52
3.3.1 fMRI数据及其预处理 52
3.3.2 评价指标 53
3.3.3 搜索能力的比较 54
3.3.4 划分数的确定 55
3.3.5 划分结果 56
3.3.6 划分结果的连接模式 57
3.3.7 划分结果的功能一致性 58
3.4 本章小结 59
第4章 基于人工蜂群算法的人脑功能划分方法
4.1 人工蜂群算法概述 61
4.2 CSABC描述 63
4.2.1 基本思想 63
4.2.2 食物源表示 64
4.2.3 初始化 64
4.2.4 自适应交叉搜索 65
4.2.5 分步式搜索 66
4.2.6 CSABC的具体流程与分析 68
4.3 实验结果与分析 70
4.3.1 fMRI数据 70
4.3.2 评价指标 71
4.3.3 模拟fMRI数据上的聚类一致性 72
4.3.4 搜索能力 73
4.3.5 划分结果 74
4.3.6 划分结果的功能一致性 79
4.3.7 功能连接指纹 81
4.4 讨论 83
4.5 本章小结 84
第5章 基于改进型粒子群的人脑功能划分方法
5.1 粒子群优化算法概述 86
5.2 DPPSO描述 88
5.2.1 基本思想 88
5.2.2 动态非线性惯性权重 89
5.2.3 粒子位置表示 90
5.2.4 种群拓扑的粒子历史最优解选择策略 90
5.2.5 DPPSO的具体流程与分析 91
5.3 实验结果与分析 93
5.3.1 评价指标 93
5.3.2 实验结果比较 94
5.4 讨论 104
5.5 本章小结 105
第6章 基于人工水母搜索优化的人脑功能划分方法
6.1 人工水母搜索优化算法 107
6.1.1 初始化阶段 107
6.1.2 搜索阶段 108
6.2 ISAJSO描述 109
6.2.1 基本思想 110
6.2.2 融入迭代停滞的时间控制机制 110
6.2.3 适应度引导的步长确定策略 111
6.2.4 ISAJSO伪代码描述 112
6.3 实验结果与分析 114
6.3.1 实验数据 114
6.3.2 实验结果比较 115
6.4 本章小结 120
第7章 基于滑动窗口和人工蜂群算法的动态人脑功能划分方法
7.1 基础内容 122
7.1.1 动态人脑功能划分 122
7.1.2 滑动窗口 122
7.2 SWABC描述 123
7.2.1 基本思想 123
7.2.2 功能连接相似性最小性准则 124
7.2.3 基于混合策略的雇佣蜂搜索 125
7.2.4 动态半径约束的侦察蜂搜索 126
7.2.5 SWABC的具体流程与分析 129
7.3 实验结果与分析 130
7.3.1 fMRI数据与预处理 130
7.3.2 评价指标 131
7.3.3 滑动窗口长度的确定 131
7.3.4 功能状态数的确定 132
7.3.5 各评价指标上的比较 133
7.3.6 动态功能划分结果的验证 140
7.4 讨论 142
7.5 本章小结 143
结论 144
参考文献 147