搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
高维数据的流形学习分析方法
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787307178397
  • 作      者:
    李波著
  • 出 版 社 :
    武汉大学出版社
  • 出版日期:
    2016
收藏
作者简介
  李波,男,博士,武汉科技大学副教授,中国科学院自动化所博士后,国际INNS协会会员。目前从事模式识别、机器学习和生物信息学等方面的研究工作,在国际SCI,EI期刊和国际会议上发表论文20余篇。
展开
内容介绍
  流形学习作为一种非线性维数约减方法,可以成功挖掘高维非线性数据中蕴含的几何结构信息,实现高维数据到低维空间中的映射。本书首先介绍了流形学习方法研究的背景和典型应用领域,然后对于流形及流形学习相关的数学概念进行定义,按照流形学习方法的特点对其分类,并详细描述了每一类型代表性流形学习方法。本书面向数据分类,探讨了传统流形学习方法的缺陷及常用解决措施。针对流形学习噪声敏感,设计了基于ISOMAP的噪声流形学习方法。结合原始流形无监督学习的特点,提出了基于LE的判别图拉普拉斯谱学习方法和基于LLE的局部线性判别嵌入方法的监督学习方法。本书还根据多类数据的多流形分布假设,介绍三种基于多流形相似度度量学习的多流形判别学习方法。并从克服小样本问题入手,定义两种多流形间距准则,阐述了三种基于多流形间距准则的多流形判别学习方法。最后,构建线性维数约减统一Fisher框架模型。
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证