搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
图像处理中的数学修炼
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787302457428
  • 作      者:
    左飞著
  • 出 版 社 :
    清华大学出版社
  • 出版日期:
    2017
收藏
编辑推荐
  “受读者喜爱的IT图书作译者奖”获得者左飞又一力作。探索图像处理中的数学问题,帮助读者夯实基础、强化所学,更能帮助读者建立一条连接数学和图像处理世界的桥梁。
展开
内容介绍
  《图像处理中的数学修炼》系统地介绍了图像处理技术中所涉及的数学基础。在前四章中,笔者设法化繁为简,从众多繁冗的数学知识中萃取了在学习和研究图像处理技术时所必须的内容,以期有效地帮助读者筛选出*为必要的理论基础,包括微积分、场论、变分法、复变函数、偏微分方程、泛函分析、概率论和统计学等。本书的后半部分每章围绕一个主题详尽地介绍了一些实际应用中的技术,这部分内容涉及到的子话题和具体算法十分丰富,其中很多都是当前研究的热点。更重要的是,在后四章里,读者将反复用到本书前半部分所介绍的数学原理。这不仅能帮助读者夯实基础、强化所学,更能帮助读者建立一条连接数学和图像处理世界的桥梁,做到学以致用。本书可作为图像处理和机器视觉等领域的从业人员的技术指导资料,也可作为大专院校相关专业师生研究或学习的参考书籍。
展开
精彩书摘
  第3章泛函分析及变分法  前面介绍的数学知识是学习图像处理的基础,同时也是大学教育中工科数学的必修内容。如果是仅仅作为数字图像处理学习入门的先修课程基本已经足够。但数字图像处理技术是一门发展非常迅速的学科,一些新方法新理论不断涌现。因此,要想把数字图像处理作为一门学问来深入研究,显然仅仅掌握前面的数学知识仍然远远不够。本章主要介绍更进一步的数学知识,这些内容主要围绕泛函分析和变法等主题展开。这些知识与前面的内容相比要更加艰深和抽象。对于本章内容的学习,侧重点应该更多地放在有关概念的理解上,而非是深究每一条定理该如何证明。当然本部分内容仍然与前面的内容紧密相连,所以读者务必在牢固掌握之前内容的基础上再进行本章的学习。  3.1勒贝格积分理论  前面介绍过积分的概念,彼时所讨论的积分首先是由黎曼严格定义的,因此之前所研究的积分通常称为黎曼积分,简称R积分。黎曼积分在数学、自然科学或者工程科学中具有非常重要的作用,正如前面所介绍的那样,诸如弧长、面积、体积、做功、通量等概念都可以借助黎曼积分来表达。然而,随着现代数学和自然科学的发展,黎曼积分的缺陷也逐渐显现。这时勒贝格积分便应运而生了。在介绍勒贝格(Lebesgue)积分的概念之前,有必要介绍点集的勒贝格测度与可测函数的基本理论,这些内容是建立勒贝格积分的必要前提。  3.1.1点集的勒贝格测度  点集的测度是区间长度概念的推广。设E为直线R上任意一个点集,用mE表示E的测度。如果E是直线上的区间(a,b),或者E=[a,b]、(a,b]、[a,b),那么自然会想到可以定义该区间的长度b-a为它的测度,即mE=b-a。如果E是直线上的开集,那么可以根据开集构造定理定义它的测度。  定义设G为直线上的有界开集,定义G的测度为它的一切构成区间的长度之和。也就是说,若  G=∪k(αk,βk)  其中,(αk,βk)是G的构成区间,则  mG=∑k(βk-αk)  如果G的构成区间只有n个,那么上式右端是有限项(n项)之和,即  mG=∑nk=1(βk-αk)  如果G的构成区间是可数多个,那么上式右端是一个无穷级数  mG=∑+∞k=1(βk-αk)  由于G是有界开集,因此必然存在开区间(a,b),使G(a,b),所以对于任何有限的n,有  ∪nk=1(αk,βk)(a,b)  从而有  ∑nk=1(βk-αk)≤b-a  令n→+∞,得  mG=∑+∞k=1(βk-αk)≤b-a<+∞  这表明无穷级数是收敛的,所以上述定义是有意义的。  定义设F为直线上的有界闭集,F(a,b),则G=(a,b)-F是有界开集,定义F的测度为  mF=(b,a)-mG  ……
展开
目录
第1章必不可少的数学基础1.1极限及其应用1.1.1数列的极限1.1.2级数的敛散1.1.3函数的极限1.1.4极限的应用1.2微分中值定理1.2.1罗尔中值定理1.2.2拉格朗日中值定理1.2.3柯西中值定理1.2.4泰勒公式1.2.5黑塞矩阵与多元函数极值1.3向量代数与场论1.3.1牛顿莱布尼茨公式1.3.2内积与外积1.3.3方向导数与梯度1.3.4曲线积分1.3.5格林公式1.3.6积分与路径无关条件1.3.7曲面积分1.3.8高斯公式与散度1.3.9斯托克斯公式与旋度本章参考文献第2章更进一步的数学内容2.1傅里叶级数展开2.1.1函数项级数的概念2.1.2函数项级数的性质2.1.3傅里叶级数的概念2.1.4傅里叶变换的由来2.1.5卷积定理及其证明2.2复变函数论初步2.2.1解析函数2.2.2复变积分2.2.3基本定理2.2.4级数展开2.3凸函数与詹森不等式2.3.1凸函数的概念2.3.2詹森不等式及其证明2.3.3詹森不等式的应用2.4常用经典数值解法2.4.1牛顿迭代法2.4.2雅可比迭代2.4.3高斯迭代法2.4.4托马斯算法本章参考文献第3章泛函分析及变分法3.1勒贝格积分理论3.1.1点集的勒贝格测度3.1.2可测函数及其性质3.1.3勒贝格积分的定义3.1.4积分序列极限定理3.2泛函与抽象空间3.2.1线性空间3.2.2距离空间3.2.3赋范空间3.2.4巴拿赫空间3.2.5内积空间3.2.6希尔伯特空间3.2.7索伯列夫空间3.3从泛函到变分法3.3.1理解泛函的概念3.3.2变分的概念3.3.3变分法的基本方程3.3.4理解哈密尔顿原理3.3.5等式约束下的变分3.3.6巴拿赫不动点定理3.3.7有界变差函数空间本章参考文献第4章概率论与统计学基础4.1概率论的基本概念4.2随机变量数字特征4.2.1期望4.2.2方差4.2.3矩与矩母函数4.2.4协方差与协方差矩阵4.3基本概率分布模型4.3.1离散概率分布4.3.2连续概率分布4.4概率论中的重要定理4.4.1大数定理4.4.2中央极限定理4.5随机采样4.5.1随机采样分布4.5.2蒙特卡罗采样4.6参数估计4.6.1参数估计的基本原理4.6.2单总体参数区间估计4.6.3双总体均值差的估计4.6.4双总体比例差的估计4.7假设检验4.7.1基本概念4.7.2两类错误4.7.3均值检验4.8极大似然估计4.8.1极大似然法的基本原理4.8.2求极大似然估计的方法4.9贝叶斯推断4.9.1先验概率与后验概率4.9.2共轭分布本章参考文献第5章子带编码与小波变换5.1图像编码的理论基础5.1.1率失真函数5.1.2香农下边界5.1.3无记忆高斯信源5.1.4有记忆高斯信源5.2子带编码基本原理5.2.1数字信号处理基础5.2.2多抽样率信号处理5.2.3图像信息子带分解5.3哈尔函数及其变换5.3.1哈尔函数的定义5.3.2哈尔函数的性质5.3.3酉矩阵与酉变换5.3.4二维离散线性变换5.3.5哈尔基函数5.3.6哈尔变换5.4小波及其数学原理5.4.1小波的历史5.4.2小波的概念5.4.3多分辨率分析5.4.4小波函数的构建5.4.5小波序列展开5.4.6离散小波变换5.4.7连续小波变换5.4.8小波的容许条件与基本特征5.5快速小波变换算法5.5.1快速小波正变换5.5.2快速小波逆变换5.5.3图像的小波变换5.6小波在图像处理中的应用本章参考文献第6章正交变换与图像压缩6.1傅里叶变换6.1.1信号处理中的傅里叶变换6.1.2数字图像中的傅里叶变换6.1.3快速傅里叶变换的算法6.2离散余弦变换6.2.1基本概念及数学描述6.2.2离散余弦变换的快速算法6.2.3离散余弦变换的意义与应用6.3沃尔什阿达马变换6.3.1沃尔什函数6.3.2离散沃尔什变换及其快速算法6.3.3沃尔什变换的应用6.4卡洛南洛伊变换6.4.1主成分变换的推导6.4.2主成分变换的实现6.4.3基于KL变换的图像压缩本章参考文献第7章无所不在的高斯分布7.1卷积积分与邻域处理7.1.1卷积积分的概念7.1.2模板与邻域处理7.1.3图像的高斯平滑7.2边缘检测与微分算子7.2.1哈密尔顿算子7.2.2拉普拉斯算子7.2.3高斯拉普拉斯算子7.2.4高斯差分算子7.3保持边缘的平滑处理7.3.1双边滤波算法应用7.3.2各向异性扩散滤波7.3.3基于全变差的方法7.4数学物理方程的应用7.4.1泊松方程的推导7.4.2图像的泊松编辑7.4.3离散化数值求解7.4.4基于稀疏矩阵的解法7.5多尺度空间及其构建7.5.1高斯滤波与多尺度空间的构建7.5.2基于各向异性扩散的尺度空间本章参考文献第8章处理彩色图像8.1从认识色彩开始8.1.1什么是颜色8.1.2颜色的属性8.1.3光源能量分布图8.2CIE色度图8.2.1CIE色彩模型的建立8.2.2CIE色度图的理解8.2.3CIE色度图的后续发展8.3常用的色彩空间8.3.1RGB颜色空间8.3.2CMY/CMYK颜色空间8.3.3HSV/HSB颜色空间8.3.4HSI/HSL颜色空间8.3.5Lab颜色空间8.3.6YUV/YCbCr颜色空间8.4色彩空间的转换方法8.4.1RGB转换到HSV的方法8.4.2RGB转换到HSI的方法8.4.3RGB转换到YUV的方法8.4.4RGB转换到YCbCr的方法8.5基于直方图的色彩增强8.5.1普通直方图均衡8.5.2CLAHE算法8.5.3直方图规定化8.6暗通道先验的去雾算法8.6.1暗通道的概念与意义8.6.2暗通道去雾霾的原理8.6.3算法实现与应用本章参考文献附录法国数学家小传德国数学家小传英国数学家小传其他数学家小传本附录参考文献
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证