《增强学习与近似动态规划》对增强学习与近似动态规划的理论、算法及应用进行了深入研究和论述。主要内容包括:求解Markov链学习预测问题的时域差值学习算法和理论,求解连续空间Markov决策问题的梯度增强学习算法以及进化一梯度混合增强学习算法,基于核的近似动态规划算法,增强学习在移动机器人导航与控制中的应用等。《增强学习与近似动态规划》是作者在多个国家自然科学基金项目资助下取得的研究成果的总结,意在推动增强学习与近似动态规划理论与应用的发展,对于智能科学的前沿研究和智能学习系统的应用具有重要的科学意义。
《增强学习与近似动态规划》可作为高等院校与科研院所中从事人工智能与智能信息处理、机器人与智能控制、智能决策支持系统等专业领域的研究和教学用书,也可作为自动化、计算机与管理学领域其他相关专业师生及科研人员的参考书。
展开