出必须有类似富勒烯结构的碳的碎片才可以形成SWCNT。从上述实验结果我们可以看出,SWCNT生长过程中固相的过程是很关键的,不过有些细节问题还没有解决。<br> 而化学气相沉积方法制备纳米碳管的过程是一个气固反应过程,该过程涉及几个步骤:反应物种吸附到催化剂表面,发生表面反应生成纳米碳管和气态副产物,气态产物从基底表面脱附。前期研究催化热解制备碳纤维的过程发现,其生长过程包括吸附在催化剂表面的碳源(如甲烷)被催化裂解成碳,碳在催化剂粒子中溶解扩散;当达到过饱和时,碳将以管的形式析出。如果催化剂粒子与基底表面的黏附力比较强,碳将会从粒子的上面析出,即底端生长模型;而催化剂粒子与表面的黏附力较弱时,碳将从粒子的下面析出,粒子会被不断生长的碳管举起,这样催化剂颗粒就会处于碳管的上端,即顶端生长模型。纳米碳管的生长过程也被认为遵循上述过程,因为在纳米碳管的顶端或底端都可以找到催化剂颗粒。这为纳米碳管生长动力学的研究提供了一些有趣的信息。Puretzky等通过测定He-Ne激光束从垂直定向生长的纳米碳管管束上获得的时间分辨的反射率,来直接观察纳米碳管生长的动力学过程。根据实验结果他们提出了一个动力学模型,指出前驱体催化热解的热活化过程可以视为一个低温行为。Einarsson等口发现纳米碳管生长的速率在开始阶段随着前驱体气压的增加而成正比上升,但是在一个固定的压力值就饱和了。如果生长温度提高,这个饱和气压值也升高。虽然催化化学气相沉积法机理研究可以借鉴碳纤维的生长机理,但是纳米碳管生长中还有一个重要的问题没有解决,就是催化剂颗粒为什么会失活或中毒。失活也许是一个外部因素造成的,如催化剂与基底的化学反应,原料扩散受阻;但也可能是生长过程本身的一部分(如生成了促使失活的副产物),也就是“自失活”过程。由于失活问题直接关系到纳米碳管连续生长的长度,因此成为目前CVD方法在机理研究中的一个重点,但是测定催化剂颗粒的寿命是实验上的一个难点。Chiashi等。和Kaminska等。最先使用拉曼光谱来实时跟踪纳米碳管的生长,因为拉曼光谱不仅可以提供动力学数据,还可以提供碳管的结构信息。Picher等。也报道了他们使用原位拉曼光谱研究SWCNT“自失活”过程的实验结果。他们的研究揭示了生长速率和生长寿命是反向相关的,根据生长条件的不同存在两种不同的规律。生长速率与寿命的表观活化能类似于生长过程中的缺陷愈合所需的活化能。因此他们提出纳米碳管生长过程中“自失活”是由于在催化剂颗粒与纳米碳管开口的界面处结构缺陷的增大,而这些边缘缺陷的热退火是延长生长寿命的一个重要方法。<br> ……
展开