搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
固体物理学现代教程
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787561158128
  • 作      者:
    韩福祥编著
  • 出 版 社 :
    大连理工大学出版社
  • 出版日期:
    2010
收藏
内容介绍
    Solid State Physics is the study of the state of solids. Its development is accompanied by the development of modern science and technology. It contains many fundamental concepts that are essential to a great number of branches of science, including those within as well as those outside physics. An exhausted list of these branches is intimidating. Here we just name a few: Condensed matter physics, material science, semiconductor physics, laser physics, spin-tronics, physical optics, electric engineering, and electronic engineering. In solids, there exist a variety of particles (including quasiparticles and elementary excitations) and interactions among them. These particles and interactions determine the potential applications of various solids. For example, the peculiar band structure of electrons in semiconductors lead to transis-tors that are the heart of everything electronic; the electron-photon interactions lead to laser diodes, photodiodes, and CCDs (coupled charge diodes); the electron-phonon interactions lead to piezoelectric materials; the electron spin-charge interactions lead to spintronics and quantum computation; the macroscopic quantum phenomena of electrons in metallic solids lead to superconductivity, with the strong correlation of electrons leading to high temperature superconductivity. Thus, it can be said that Solid State Physics is the study of the prop-erties of various particles in solids and the interactions among these particles as well as the interactions of these particles with external fields. Electrons and nuclei (or valence electrons and ions) are the basic constituents of solids, with many other quasiparticles or elementary excitations arising due to the interactions among themselves or due to their interactions with external fields.
展开
目录
1 drude theory of metals
1.1 drude model of a metal
1.2 basic assumptions in the drude theory
1.3 equation of motion
1.4 electrical conductivity of a metal
1.5 hall effect and magnetoresistance
1.6 thermal conductivity of a metal
1.7 inadequacies of the drude model
problems

2 sommerfeld theory of metals
2.1 single-electron energy levels
2.2 ground state of the electron gas
2.3 finite-temperature properties of the electron gas
2.4 conductions in metals
2.5 inaccuracies of the sommerfeld theory
problems

3 bravais lattice
3.1 definition of a bravais lattice
3.2 primitive vectors
3.3 primitive unit cell
3.4 wigner-seitz cell
3.5 conventional unit cell
3.6 lattice vectors
3.7 bravais lattices in two dimensions
3.8 bravais lattices in three dimensions
3.9 mathematical description of a bravais lattice
problems

4 point groups
4.1 point symmetry operations
4.2 group
4.3 point groups for crystal structures
problems

5 classification of bravais lattices
5.1 lattice centerings
5.2 criteria of classification of bravais lattices
5.3 seven crystal systems
5.4 crystallographic point groups
5.5 summary
problems

6 space groups of crystal structures
6.1 nonsymmorphic symmetry operations
6.2 notation of a space group
6.3 symmorphic space groups
6.4 nonsymmorphic space groups
6.5 typical crystal structures
problems

7 scattering of x-rays by a crystal
7.1 general description of x-ray scattering
7.2 scattering of x-rays by an atom
7.3 scattering of x-rays by a primitive cell
7.4 scattering of x-rays by a crystal
problems

8 reciprocal lattice
8.1 derivation of the reciprocal lattice
8.2 reciprocal lattices of two-dimensional bravais lattices
8.3 reciprocal lattices of three-dimensional bravais lattices
8.4 brillouin zones
8.5 reciprocal lattice vectors and lattice planes
8.6 alternative definition of miller indices
8.7 interplanar distances in families of lattice planes
problems

9 theories and experiments of x-ray diffraction
9.1 characteristic x-ray lines
9.2 braggs theory of x-ray diffraction
9.3 von laues theory of x-ray diffraction
9.4 equivalence of braggs and von laues theories
9.5 experimental methods of x-ray diffraction
9.6 diffraction by a polyatomic crystal with a basis
problems

10 crystal structure by neutron diffraction
10.1 neutrons
10.2 elastic neutron scattering
10.3 powder diffraction
10.4 pair distribution function analysis
10.5 neutron and x-ray diffraction
10.6 rietveld profile refinement
problems

11 bonding in solids
11.1 ionic bonds
11.2 covalent bonds
11.3 metallic bonds
11.4 van der waals bonds
11.5 hydrogen bonds
11.6 classificatiofi of crystalline solids
problems

12 cohesion of solids
12.1 definition of energies of cohesion
12.2 cohesive energies of molecular crystals
12.3 lattice energies of ionic crystals
12.4 cohesive er/ergies of alkali metals
problems

13 normal modes of lattice vibrations
13.1 born-oppenheimer approximation
13.2 lattice potential energy and harmonic approximation
13.3 normal modes of a one-dimensional crystal
13.4 normal modes of a one-dimensional ionic crystal
13.5 normal modes of a 3d monatomic crystal
13.6 normal modes of a 3d crystal with a basis
problems

14 quantum theory of lattice vibrations
14.1 classical theory of the lattice specific heat
14.2 quantization of lattice vibrations
14.3 phonon density of states
14.4 lattice specific heat of solids
14.5 debye model
14.6 einstein model
14.7 effect of thermal expansion on phonon frequencies
14.8 specific heat of a metal
problems

15 inelastic neutron scattering by phonons
15.1 experimental techniques
15.2 description of neutron scattering
15.3 double differential cross-section
15.4 elastic scattering
15.5 inelastic scattering
15.6 phonon dispersion relations in tetragonal lacu204
problems

16 origin of electronic energy bands
16.1 blochs theorem
16.2 periodic 5-potentials
16.3 schemes for displaying electronic band structure
16.4 free-electron band structures
16.5 fermi surface
16.6 density of states in an energy band
16.7 electronic band structures of real solids
16.8 group velocity of an electron in an energy band
problems

17 electrons in a weak periodic potential
17.1 one-dimensional weak periodic potential
17.2 three-dimensional weak periodic potential
problems

18 methods for band structure computations
18.1 fundamental problem in an electronic energy band theory
18.2 hartree-fock method
18.3 plane-wave method
18.4 k·p method
18.5 augmented-plane-wave method
18.6 linearized-augmented-plane-wave method
18.7 linear-muffin-tin-orbitals method
18.8 kkr method
18.9 orthogonalized-plane-wave method
18.10 tight-binding method
problems

19 dynamics of bloch electrons in electric fields
19.1 velocity of an electron in a single-electron state
19.2 semiclassical equation of motion
19.3 current density
19.4 holes
19.5 bloch oscillations
19.6 wannier-bloch and wannier-stark states
problems

20 fundamentals of semiconductors
20.1 classification of semiconductors
20.2 electronic band structures of semiconductors
20.3 intrinsic semiconductors
20.4 hnpurity states
20.5 semiconductor statistics
20.6 electrical conductivity and mobility
20.7 excitons
20.8 carrier diffusion
problems
index
physical constants
mathematical constants and formulas
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证