第三卷和第四卷
入们普遍推测,《几何原本》前两卷的内容是毕达哥拉斯学派的作品。另一方面,第三卷和第四卷处理圆的几何学,这两卷的材料被认为主要取自希俄斯岛的希波克拉底。这两卷的内容跟今天的教科书中关于圆的定理并无不同。比方说,第三卷的定理1要求作一个圆的圆心;最后一个(命题37)类似于宣称:如果从圆外的一点作一条切线和一条割线,则切线上的正方形等于整个割线与其圆外线段所构成的矩形。第四卷包含16个命题,大多为现代学生所熟悉,关于圆的内接或外切图形。度量角的定理被留到了比例理论确立之后。比例理论
《几何原本》的13卷当中,最受推崇的是第五卷和第十卷——前一卷论述一般比例理论,后一卷论述不可公度量的分类。不可公度量的发现预示了一次逻辑学危机,使人怀疑那些求助于比例的证明,但通过欧多克索斯所阐述的原理,成功地化解了这场危机。尽管如此,但希腊的数学家们依然倾向于避免使用比例。我们已经看到,欧几里得曾尽可能地摆脱比例,以及像x:a=b:c这样的长度关系被看作是面积关系cx=ab。然而,比例迟早总是需要的,于是,欧几里得便在《几何原本》的第五卷中解决了这个问题。有些注释者甚至暗示,整个这一卷(包含25个命题)都是欧多克索斯的作品,但这似乎不大可能。某些定义——例如比的定义——太含糊不清,以至没什么用处。然而,定义4本质上是欧多克索斯和阿基米德的公理:“两个量当中,如果一个量增加若干倍后大于另一个量,则可以说这两个量有一个比。”定义5(比的相等)正是早先讲到欧多克索斯对比例的定义时所给出的。
对马虎的读者来说,第五卷看上去可能像第二卷一样多余,因为这两卷的内容如今都已经被符号代数中的相应法则所取代。对公理体系感兴趣的更细心的读者会看到,第五卷处理了在所有数学中有着根本重要性的论题。它最开始的两个命题,相当于乘法对加法的分配律,以及乘法的结合律:(ab)c=口(6c)。接下来是“大于”和“小于”法则,以及众所周知的比例属性。人们经常宣称,希腊的几何代数,在平面几何中不可能超过二次,在立体几何中不可能超过三次,但情况实际上并非如此。一般比例理论允许使用任何次数的乘积,因为一个形如X4=abcd的方程式,相当于像x/a·x/b=c/x-d/x这样的线段比例的乘积。
在第五卷中发展出了比例理论之后,欧几里得便在第六卷中利用了这一理论,来证明涉及到相似的三角形、平行四边形或其他多边形的比和比例的有关定理。值得注意的是命题3l,它是毕达哥拉斯定理的一般化:“在直角三角形中,对直角的边上所作的图形等于夹直角边上所作与前图相似且有相似位置的二图形之和。”普罗克洛斯把这一扩充归功于欧几里得本人。第六卷还包含了(在命题28和29中)面积应用方法的一般化,因为第五卷中所给出的比例的坚实基础使得作者如今能够随心所欲地使用相似的概念。第二卷中的矩形现在被平行四边形所取代,要求把一个与给定直线形相等的平行四边形置于一条给定线段之上,并不足(或多出)一个与给定的平行四边形相似的平行四边形。这些作图,就像第二卷命题5和6的作图一样,实际上都是二次方程bx=ac±X2的解,受到了判别式不是负数这个条件的限制(第九卷的命题27暗示了这样的限制)。
……
展开
——威廉·邓纳姆(William Dunham)
当我们读一本像《数学史》这样的书的时候,我们得到的是一幅支架结构的图景,不断地更高、更宽、更美丽、更宏伟,有一个基础,此外,如今的这个结构就像将近2600年前泰勒斯得出最早的几何定理时一样完美无瑕,一样起作用。
——艾萨克·阿西莫夫(Isaac Asimoy)
本书是数学这门学科的一部最有用、最全面的概论之一。
——约瑟夫.W.道本(Joseph W.Dauben)
既有学术性,又有可读性,本书可以充当介绍这个课题的一部很好的引论,同时也是一部很好的参考书。
——J.戴维·波尔特(J.David Bolter)