《算子代数与非交换Lp空间引论》介绍算子代数与非交换Lp空间的基本内容,共分6章。第1章和第2章阐述C*代数的基本理论,包括Gelfand变换、连续函数演算、Jordan分解和GNS构造等内容。第3章和第4章系统论述von Neumann代数的基本理论,涵盖了核算子、算子代数的局部凸拓扑、Borel函数演算、von Neumann二次交换子定理和Kaplansky稠密性定理、正规泛函等内容。第5章介绍非交换Lp空间的基本性质,包括非交换测度空间、非交换Holder不等式、非交换Lp空间的对偶性、可测算子以及非交换测度空间的张量积等内容。第6章是若干例子,它们是前述各章内容的补充与综合应用。附录介绍Hilbert空间上紧算子的谱理论。全书内容简练、结构清晰,每个结果都给出详细的证明并且例题充分翔实。<br> 《算子代数与非交换Lp空间引论》可作为数学专业的研究生教材,也可供从事数学和理论物理研究的教师与科研人员参考。
展开