第1章 热力学平衡态温度
1.1 热现象的统计和热力学研究方法
物体的冷热程度用物理量“温度”来表示,物体的物理性质随温度的变化称热现象。研究热现象有两种方法,即热力学和统计物理的方法。热力学是宏观理论,它以实验上总结出的三个实验定律(热力学第一定律、热力学第二定律和热力学第三定律)为基础,研究物体的热现象,可得到物体宏观物理量之间的关系,并可讨论物理过程进行的方向。从热力学得到的结果是可靠的和普遍的,对一切物体都适用,它的缺点是不考虑物体的具体结构,因而不能给出某物质的具体性质,同时对涨落现象也不能给出解释。统计物理是微观理论,它从物质的微观结构出发,即物体由分子、原子或离子组成,并从这些粒子的运动和它们之间的相互作用,用统计的方法得到物体的宏观性质(热性质),但对具体物体的微观结构在计算中要作简化假定,得到的结果是近似的,必须与实验作比较。所以两种方法各有其优缺点,两者是相辅相成的。
任何物体都由大量的分子、原子组成,如稀薄的气体在标准情况下每立方厘米有2.7×1019个分子,在液体和固体中,每立方厘米有1022个粒子。每个粒子(原子、分子或离子)都处于连续不断的无规则的运动中,此运动称为分子的热运动。热运动与温度有关,温度越高分子的热运动越剧烈,平动动能越大。布朗运动(微小的悬浮粒子在液体中的随机运动)和扩散现象都是此观点的实验基础。如果我们假设物体中的每个粒子都遵守牛顿第二定律,解出每个粒子的运动方程,然后来求出物体的宏观性质,如比热容或热导率,实际上这是不可能的。那么多方程靠现在的计算机无法完成,以后计算机发展了是否可能?但这还不是原则上的困难,根本的困难在于力学规律是可逆的,而热学规律是不可逆的,如何从可逆的规律导出不可逆的规律?由大量微观粒子组成的系统的宏观性质,只能基于力学规律,借助于统计方法来研究。把概率论用于被研究的系统的各种结构模型,基于等概率原理,能用统计方法求出宏观物理量的平均值,如气体的分子热运动速度的平均值或能量的平均值、固体的比热容等,并能对热力学三个定律给出统计解释,对涨落现象也给出合理的解释。
展开