中文版序
中文版前言
前言
第1章 最优化问题简介
1.1 最优化问题
1.2 本书内容简介
第2章 凸分析
2.1 向量与矩阵
2.2 开集、闭集与极限
2.3 凸集
2.4 分离定理
2.5 锥与极锥
2.6 函数的连续性与可微性
2.7 函数
2.8 共轭函数
2.9 示性函数与支撑函数
2.10 凸函数的次梯度
2.11 非凸函数的次梯度
2.12 点集映射
2.13 单调映射
2.14 习题
第3章 最优性条件
3.1 切锥与最优性条件
3.2 Karush-Kuhn-Tucker条件
3.3 约束规范
3.4 鞍点定理
3.5 二阶最优性条件
3.6 等式与不等式约束优化问题
3.7 不可微最优化问题
3.8 半定规划问题
3.9 最优解的连续性
3.10 灵敏度分析
3.11 习题
第4章 对偶性理论
4.1 极大极小问题与鞍点
4.2 Lagrange对偶问题
4.3 Lagrange对偶性
4.4 Lagrange对偶性的推广
4.5 Fenchel对偶性
4.6 半定规划问题的对偶性
4.7 习题
第5章 均衡问题
5.1 变分不等式与互补问题
5.2 解的存在性与唯一性
5.3 再定式为等价方程组
5.4 价值函数
5.5 MPEC
5.6 习题
参考文献
索引
后记
译者后记
《现代数学译丛》已出版书目
展开