搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
Galois理论
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787560332253
  • 作      者:
    (德)E. 阿廷著
  • 出 版 社 :
    哈尔滨工业大学出版社
  • 出版日期:
    2011
收藏
作者简介
    阿廷(Artin,Emil,1898—1962)
    代数学家。生于奥地利维也纳。1916年在维也纳大学学习了一个学期后加入步兵团;1919年进莱比锡大学继续学习,1921年获博士学位;随即去格廷根大学一年;后到汉堡大学,1923年为不支薪讲师,1925年升为副教授,1926年升为教授。1937年移居美国,先后在圣母玛利亚大学和布卢明顿印第安那大学执教。1946—1958年执教普林斯顿大学。1958年回到汉堡大学。1962年法国克莱蒙尔德大学授予他荣誉博士学位,同年他因心力衰竭逝世。
    阿廷研究的领域很广,主要有仿射几何,类域论,伽罗华理论,Г-函数,同调代数,模论,环论,拓扑,复变函数论等。
展开
内容介绍
    《Galois理论》是世界著名数学家阿廷(E.Artin)在德国NotreDume大学的讲稿,《Galois理论》用极其简练的语言介绍了近世代数中的伽罗华(Galois)理论。
    《Galois理论》对伽罗华理论的论述有自己独到之处,如伽罗华理论基本定理的证明较之其他著作有较大简化。对分圆多项的不可约性在《Galois理论》中采用了朗道(Landau)的证法,而不是像其他书中采用整多项式的性质进行证明。
展开
目录
Ⅰ  线性代数
A.体
B.向量空间
C.齐次线性方程
D.向量的相关性与无关性
E.非齐次线性方程
F.行列式

Ⅱ  体论
A.扩体
B.多项式
C.代数元
D.分裂体
E.多项式分解成不可约因子的唯一可分解性
F.群特征标
G.命题13的应用与例子
H.正规的体扩张
I.代数扩张和可分扩张
J.Abel群及其在体论上的应用
K.单位根
L.Noether方程
M.Kummer体
N.正规基的存在
O.平移命题

Ⅲ  应用
A.要用到的群论中的某些命题
B.方程用根式的可解性
C.方程的Galois群
D.尺规作图
附录  纪念李同孚先生
编辑手记
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证