(4)周期函数 设函数y=f(x)在实直线上有定义,T0是一正数,若对任意x∈R,有 f(x+T0)=f(x),则称y=f(x)为以T0为周期的周期函数,T0称为y=f(x)的一个周期,如果存在T1>0是使上式成立的最小正数,则称T1为y=f(x)的最小正周期。(5)复合函数设(D,f),(U,g)是两个函数,且R=f(D)∈U,由此对任意的x∈D,有惟一确定y=f(x)∈R∈U与之对应,于是对此y∈U,有惟一确定的x=g(y)与之对应,这就得到新的函数x=g(f(x)),x∈D称为g,f的复合函数。复合函数是数学分析中比较重要的函数概念,有关初等函数的定义及求导运算和积分运算都涉及了复合函数。(6)凸函数 (a)设y=f(x)在区间I上有定义,若对于任意x,y∈I,t∈(0,1)有 f(tx+(1—t)y)≤tf(x)+(1—t)f(y),则称y=f(x)为区间I上的凸函数或称其在区间I上是凸的。若不等式严格成立,则称y=f(x)为区间I上的严格凸函数或称其在区间I上是严格凸的。凸函数的另一表达形式是对于任意的x f(y)—f(x)≤f(z)—f(x)/z—x≤f(z)—f(y)/z—y (b)若对于任意x,y∈I,t∈(0,1)有 f(tx+(1—t)y)≥tf(x)+(1—t)f(y),则称y=f(x)为区间I上的凹函数或称其在区间I上是凹的。若不等式严格成立,则称f(x)为区间I上的严格凹函数或称其在区间I上是严格凹的。凹函数的另一表达形式是对于任意的x f(y)—f(x)/y—x≥f(z)—f(x)/z—x≥f(z)—f(y)/z—y 凸函数是数学分析中相当重要的函数概念,有关凸函数的性质的研究是数学分析中重要的问题之一,不但其主要结果在数学和其他学科得到了广泛的应用,而且数学分析中相当多的重要不等式就是利用凸函数的性质得到的。(7)函数的确界与振幅 设y=f(x)是有界函数。四、连续函数的定义和基本性质 (1)连续函数的定义 设函数f(x)在区间I上有定义,x0∈I,若则称f(x)在x=x0处连续,若对任意x∈I,f(x)都连续,则称f(x)在I上连续。(2)有界闭区间上的最大和最小值定理。
展开