搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
应用回归及分类——基于R与Python的实现(第3版)(基于R应用的统计学丛书)
0.00     定价 ¥ 56.00
图书来源: 浙江图书馆(由JD配书)
此书还可采购15本,持证读者免费借回家
  • 配送范围:
    浙江省内
  • ISBN:
    9787300337753
  • 作      者:
    吴喜之,张敏
  • 出 版 社 :
    中国人民大学出版社
  • 出版日期:
    2025-05-01
收藏
作者简介
吴喜之,北京大学数学力学系本科,美国北卡罗来纳大学统计博士。中国人民大学统计学院教授,博士生导师。曾在美国加利福尼亚大学、北卡罗来纳大学以及南开大学、北京大学等多所著名学府执教。张 敏 重庆工商大学讲师。作为第一作者发表CSSCI、CSCD、SCI文章多篇,主持或参与国家级及省部级课题多项,作为第二作者出版关于数据科学的教材多部。
展开
内容介绍
《应用回归及分类》第一版自2016年出版以来,经过两版的沉淀,已经成为一本全面介绍回归和分类方法的权威教材,它涵盖了从传统统计学到现代机器学习的各种内容。本书旨在为读者提供一套完整、系统的数据分析工具和方法,帮助他们更好地理解和应用回归及分类技术。
1.在回归方面:本书详细介绍了经典线性回归和广义线性模型,这些模型是回归分析的基础,适用于各种实际问题的建模和预测。此外,本书还深入探讨了纵向数据(分层模型)的处理方法,为读者提供了处理复杂数据结构的有效手段。
2. 在机器学习回归方法方面:本书涵盖了决策树、bagging、随机森林、mboost、人工神经网络、支持向量机、k最近邻方法等多种技术。这些方法在现代数据分析中得到了广泛应用,具有强大的预测能力和灵活性。通过本书的学习,读者将能够熟练掌握这些方法的原理和应用技巧。
3.在分类方面:本书首先介绍了经典判别分析与logistic回归分类方法,这些方法在分类问题中具有重要地位。随后,本书深入探讨了机器学习分类方法,包括决策树、bagging、随机森林、adaboost、人工神经网络、支持向量机、k最近邻方法等。这些方法在处理复杂分类问题时具有显著优势,能够帮助读者提高分类准确性和效率。
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证