第 1 章 绪论 1
1 1 多元数据 1
1 2 多元描述性统计量 3
1 2 1 均值向量 3
1 2 2 协方差矩阵 3
1 2 3 相关系数矩阵 4
1 3 距离、相异系数、相似系数和列联系数 5
1 3 1 基于数值型变量的距离 5
1 3 2 基于分类变量的相异系数 7
1 3 3 基于混合类型变量的相异系数 8
1 3 4 相似系数 9
1 3 5 列联系数 12
1 4 多元正态分布 13
1 4 1 多元正态分布的定义 13
1 4 2 多元正态分布的检验 14
1 4 3 二元正态分布及其参考值范围 15
1 5 小结 17
1 6 习题 18
第 2 章 多元数据可视化 19
2 1 相关系数图 19
2 2 散点图矩阵 21
2 3 符号图 23
2 4 脸谱图 25
2 5 星状图和雷达图 27
2 6 平行坐标图 30
2 7 调和曲线图 32
2 8 小结 33
2 9 习题 33
第 3 章 多元数据的组间比较 34
3 1 多元 T 检验 34
3 1 1 单个正态总体均值向量检验 34
3 1 2 多元配对设计的均值向量检验 36
3 1 3 多元成组设计两样本的均值向量检验 38
3 2 多元方差分析 40
3 3 重复测量资料的多变量分析 42
3 4 协方差矩阵的检验 46
3 5 多变量的非参数检验 47
3 6 小结 48
3 7 习题 48
第 4 章 聚类分析 49
4 1 聚类分析的目的与方法 49
4 2 层次聚类法 50
4 2 1 度量类与类之间距离的方法 50
4 2 2 Q 型聚类实例 52
4 2 3 R 型聚类实例 59
4 3 k 均值聚类法 60
4 4 模糊 C 均值聚类法 63
4 5 基于模型的聚类 68
4 6 小结 73
4 7 习题 73
第 5 章 判别分析 75
5 1 距离判别法 75
5 2 Fisher 判别法 79
5 3 Bayes 判别法 82
5 4 机器学习分类算法 83
5 4 1 决策树模型 84
5 4 2 使用 caret 包实现机器学习算法 87
5 4 3 K 最邻近分类 92
5 4 4 支持向量机分类 95
5 4 5 神经网络分类 97
5 4 6 随机森林分类 100
5 5 小结 102
5 6 习题 103
第 6 章 主成分分析 104
6 1 主成分分析的基本原理 104
6 1 1 主成分的定义 104
6 1 2 主成分分析的几何意义 105
6 1 3 主成分的求法 105
6 2 使用 R 包计算主成分 107
6 2 1 使用 stats 包计算主成分 108
6 2 2 使用 FactoMineR 包计算主成分 109
6 3 主成分的应用 118
6 3 1 主成分评价 118
6 3 2 主成分回归 122
6 4 小结 123
6 5 习题 123
第 7 章 因子分析 125
7 1 因子分析模型 125
7 2 因子分析模型的求解 126
7 3 因子旋转 129
7 4 因子分析的注意事项 133
7 5 小结 134
7 6 习题 134
第 8 章 结构方程模型 135
8 1 结构方程模型概述 135
8 1 1 变量类型 135
8 1 2 结构方程模型的组成与路径图 135
8 1 3 结构方程模型分析步骤 138
8 1 4 lavaan 包简介 141
8 2 验证性因子分析 142
8 3 实例分析 148
8 4 小结 152
8 5 习题 152
第 9 章 典型相关分析 154
9 1 典型相关分析的基本思想 154
9 2 典型相关分析的基本原理 155
9 3 典型相关分析的基本步骤 155
9 4 实例分析 157
9 4 1 两组变量之间的相关性 159
9 4 2 典型相关系数和典型变量 160
9 4 3 典型相关系数的显著性检验 164
9 4 4 典型结构分析 165
9 5 小结 166
9 6 习题 166
第 10 章 偏最小二乘回归分析 168
10 1 偏最小二乘回归的基本原理 168
10 2 偏最小二乘回归的基本步骤 168
10 3 实例分析 170
10 4 小结 174
10 5 习题 174
第 11 章 对应分析 176
11 1 对应分析概述 176
11 1 1 对应分析的基本思想 176
11 1 2 基本概念 176
11 1 3 R 型与 Q 型因子分析的对等关系 178
11 1 4 对应分析应用于定量变量的情形 179
11 1 5 对应分析的计算步骤 179
11 2 简单对应分析 180
11 3 多重对应分析 185
11 4 小结 194
11 5 习题 194
附录 A 矩阵运算基础 196
A 1 矩阵的定义与创建 196
A 2 矩阵的基本运算 197
A 3 方阵的行列式与逆矩阵 198
A 4 矩阵的特征值与特征向量 198
A 5 矩阵的奇异值分解 198
附录 B 习题参考答案 200
参考文献 212
展开