Python代码仅仅能够正确运行还不够,你需要让它运行得更快。通过探索设计决策背后的基础理论,本书帮助你更加深刻地理解Python的实现。你将学习如何找到性能瓶颈,以及如何在大数据量的程序中显著加快代码。
如何利用多核架构或集群的优点?如何构建一个在不损失可靠性的情况下具备可伸缩性的系统?有经验的Python程序员将学到针对这些问题或者其他问题的具体解决方案,以及来自那些在社交媒体分析、产品化机器学习和其他场景下使用高性能Python编程的公司的成功案例。
通过阅读本书,你将能够:
■ 更好地掌握numpy、Cython和剖析器;
■ 了解Python如何抽象化底层的计算机架构;
■ 使用剖析手段来寻找CPU时间和内存使用的瓶颈;
■ 通过选择合适的数据结构来编写高效的程序
■ 加速矩阵和矢量计算;
■ 使用工具把Python编译成机器代码;
■ 管理并发的多I O和计算操作;
■ 把多进程代码转换到在本地或者远程集群上运行;
■ 用更少的内存解决大型问题。
“ 尽管P y thon在学术和工业领域很流行, 但人们也经常由于Python程序运行太慢而放弃它。本书通过介绍改善优化Python计算速度和可扩展性的策略,从而解除人们的这种误
解。”——Jake VanderPlas 华盛顿大学
展开