1 Function Spaces
1.1 Introduction
1.1.1 LP-Spaces
1.1.2 Lebesgue-Bochner Spaces
1.1.3 BUFunctions.Absolutely Continuous Functions Spaces of Measures
1.1.4 Sobolev Spaces
1.1.5 Auxiliary Notions
1.2 Problems
1.3 Solutions
Bibliography
2 Nonlinear and Multivalued Maps
2.1 Introduction
2.1.1 Compact,Completely Continuous,and Proper Maps
2.1.2 Multifunctions
2.1.3 Maximal Monotone Maps and Generalizations
2.1.4 Accretive Maps
2.1.5 Miscellaneous Results
2.2 Problems
2.3 Solutions
Bibliography
3 Smooth and Nonsmooth Calculus
3.1 Introduction
3.1.1 Ggteaux and Pr6chet Derivatives
3.1.2 Convex Functionals and Variational Inequalities
3.1.3 Locally Lipschitz Functions
3.1.4 г一Convergence and Relaxation
3.2 Problems
3.3 Solutions
Bibliography
4 Degree Theory and Fixed Point Theory
4.1 Introduction
4.1.1 Degree Theory
4.1.2 Metric Fixed Point Theory
4.1.3 Topological Fixed Point Theory
4.1.4 Order Fixed Point Theory
4.2 Problems
4.3 Solutions
Bibliography
5 Variational and Topological Methods
5.1 IIltroduction
5.1.1 Minimization Methods
5.1.2 Minimax Methods for Critical Points
5.1.3 Morse Theory:Critical Groups
5.1.4 Dirichlet Elliptic Problems
5.2 Problems
5.3 Solutions
Bibliography
List of Symbols
Index
编辑手记
展开