搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
非硅MEMS技术及其应用
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787313125255
  • 作      者:
    陈文元,张卫平,陈迪著
  • 出 版 社 :
    上海交通大学出版社
  • 出版日期:
    2015
收藏
内容介绍
  非硅MEMS技术是在硅MEMS技术基础上发展起来的,又与硅MEMS技术互为补充。作者陈文元、张卫平、陈迪及其团队长期从事非硅MEMS技术的研究。根据多年的研究,《非硅MEMS技术及其应用》中详细叙述了非硅MEMS技术的特点,非硅材料,三维非硅微加工新技术,新型非硅微传感器和微执行器等非硅MEMS技术及其应用。《非硅MEMS技术及其应用》是作者长期从事非硅MEMS技术研究,理论结合实际,科学研究的总结。
展开
精彩书摘
  《非硅MEMS技术及其应用》:
  对需产生较大回复应力的SMA微驱动器,必须利用M相变,而非只用R相变。但二元TiNi膜的相变滞后往往较大,约为30℃,即冷却至相变区的时间较长,使二元TiNi合金的响应速度较慢。所以,当需要改善TiNi合金的响应速度时,需要降低TiNi膜的相变滞后。通过向二元TiNi合金中添加Cu元素来置换Ni原子,可在不降低相变温度的条件下,有效地降低相变滞后。
  4.3.2TiNi基形状记忆合金膜的制备
  用于MEMS器件中的TiNi基薄膜的加工工艺流程主要为:薄膜制备→TiNi薄膜的图形化→晶化退火,下面对它们分别进行讨论。
  4.3.2.1TiNi基薄膜制备方法
  TiNi薄膜制备方法很多,主要有磁控溅射、真空蒸发、离子溅射、电子束沉积、脉冲激光沉积、阴极弧光等离子镀、超声束沉积、电弧喷涂等。其中,直流或射频磁控溅射法由于设备简单,薄膜沉积速率较快,且薄膜成分与靶成分相差不大等原因,而成为TiNi基薄膜制备的主要方法。磁控溅射时,影响所沉积TiNi薄膜性能的工艺参数很多,主要有:靶材、溅射气压、溅射功率、基片温度等,下面结合使用日本ANELVA公司的SPF-210射频磁控溅射机制作TiNi基薄膜时采用的具体工艺参数进行介绍。
  1)靶材
  由于靶材成分对溅射薄膜的成分有着决定性的影响,而薄膜的成分对其最终的相变也有着十分重要的影响,故在溅射前应根据所需选择具有合适成分配比的靶材。实际研究中采用铸态合金靶。
  对于TiNi薄膜,为获得室温奥氏体组织,采用富Ni的TiNi靶;为获得室温R相或M相,则采用具有富Ti成分的TiNi靶,而后通过后续晶化温度来调节最终的室温组织结构。
  对于TiNiCu薄膜,为获得室温A组织,采用相当于富(NiCu)的TiNiCu靶;而为获得搴温M组织,则采用相当于富Ti的TiNiCu靶。
  ……
展开
目录
第1章 绪论
1.1 MEMS技术及其特点
1.2 MEMS发展史
1.3 MEMS应用与市场
1.4 非硅MEMS技术
1.4.1 非硅MEMS技术的提出
1.4.2 非硅MEMS技术及其特点
1.4.3 本书内容

第2章 非硅MEMs材料
2.1 金属
2.2 聚合物
2.2.1 普通光刻胶
2.2.2 SU-8和PMMA光刻胶
2.2.3 PDMS
2.2.4 聚酰亚胺
2.2.5 Parylene
2.3 磁性材料
2.4 压电材料
2.4.1 压电材料的机电特性
2.4.2 压电陶瓷PZT
2.4.3 氮化铝及氧化锌
2.4.4 压电聚合物PVDF
2.5 形状记忆合金

第3章 非硅MEMS微加工技术
3.1 LIGA技术
3.1.1 同步辐射X光厚胶光刻工艺
3.1.2 微电铸工艺
3.1.微复制工艺
3.2 准UGA技术
3.2.1 UV-LIGA技术
3.2.2 DEM技术
3.3 多层、倾斜和可动微结构加工工艺
3.3.1 多层微结构加工工艺
3.3.2 倾斜微结构加工工艺
3.3.3 可动微结构加工工艺
3.4 柔性和弹性衬底微结构加工工艺
3.4.1 柔性衬底微结构加工工艺
3.4.2 弹性衬底微加工工艺
3.5 硅/UV-LIGA组合微加工工艺

第4章 非硅微执行器
4.1 电磁型微电机
4.1.1 永磁转子式直流无刷电磁微电机基本原理
4.1.2 永磁转子式直流无刷电磁微电机的结构和工作原理
4.1.3 微电机的设计
4.1.4 微电机的发热及摩擦
4.1.5 微电机的加工制造
4.2 抗磁悬浮静电微电机
4.2.1 可用于静电微电机的悬浮形式
4.2.2 静磁悬浮Earnshaw理论的限定和超越
4.2.3 抗磁悬浮系统的尺度特点
4.2.4 抗磁悬浮静电微电机的结构布置
4.2.5 抗磁悬浮微电机的悬浮特性
4.2.6 抗磁悬浮微电机的旋转驱动分析
4.2.7 抗磁悬浮微电机的工艺研究
4.2.8 抗磁悬浮微电机测控系统
4.2.9 抗磁悬浮微电机的实验
4.3 形状记忆合金复合膜微驱动器
4.3.1 TiNi基形状记忆合金膜
4.3.2 TiNi基形状记忆合金膜的制备
4.3.3 TiNi基/Si形状记忆合金复合膜微泵
4.4 基于非硅微加工技术的电化学驱动器

第5章 聚合物PeR生物芯片技术
5.1 引言
5.1.1 细胞内DNA的半保留复制
5.1.2 体外DNA扩增的PCR技术
5.1.3 传统PCR仪与PCR芯片
5.1.4 PCR芯片的研究现状
5.2 静态腔式PCR芯片
5.2.1 反应腔单元设计
5.2.2 加热器和温度传感器设计
5.2.3 静态腔式PCR芯片温度控制单元设计
5.2.4 总体布局设计
5.3 集成式连续流PCR芯片设计
5.3.1 芯片反应流体通道布局设计
5.3.2 PCR芯片的集成薄膜加热器和温度传感器
5.3.3 连续流式PCR芯片控制单元设计
5.4 PCR生物芯片的制造工艺
5.4.1 SU-8工艺研究
5.4.2 PDMS相关工艺
5.4.3 导管连接
5.4.4 微加热器和传感器
5.5 生物实验、结果及其分析
5.5.1 PCR芯片表面改性
5.5.2 静态腔式PCR生物实验
5.5.3 连续流PCR

第6章 微光通信器件
6.1 光纤连接器
6.1.1 简介
6.1.2 光纤连接器的研究现状
6.1.3 金属盖板光纤连接器的结构及原理
6.1.4 曲面金属盖板光纤连接器阵列的加工
6.2 MEMS可调光衰减器
6.2.1 电磁驱动挡光片式MEMS可调光衰减器
6.2.2 电磁驱动错位型MEMS可调光衰减器
6.3 摆动式电磁驱动.MEMS光开关

第7章 微惯性传感器
7.1 微惯性传感器概述
7.1.1 微惯性传感器的应用
7.1.2 微加速度计
7.1.3 微陀螺仪
7.2 静电悬浮微惯性传感器
7.2.1 静电悬浮微惯性传感器的研究概况
7.2.2 静电悬浮微惯性传感器的工作原理
7.2.3 静电悬浮微惯性传感器的实现技术
7.2.4 静电悬浮微惯性传感器的设计
7.2.5 静电悬浮微惯性传感器的制造
7.2.6 静电悬浮微惯性传感器的测控
7.3 电磁悬浮转子微陀螺
7.3.1 电磁悬浮转子微陀螺的工作机理
7.3.2 电磁悬浮转子微陀螺的结构及其优化
7.3.3 电磁悬浮转子微陀螺的制作工艺
7.3.4 电磁悬浮转子微陀螺的悬浮及旋转特性测试
7.4 压电式微固体模态陀螺
7.4.1 微固体模态陀螺的模型及工作机理
7.4.2 微固体模态陀螺的模态、谐振、科氏角速度效应分析
7.4.3 微固体模态陀螺的微加工工艺
7.4.4 微固体模态陀螺的驱动及检测电路
7.4.5 微固体模态陀螺的原理样机测试
7.5 抗高过载金属微加速度计
7.5.1 抗高过载金属微加速度计的结构设计
7.5.2 基于非硅MEMS技术的金属微加速度计的微制造
7.5.3 电容式金属微加速度计的自检测试

第8章 MEMs强链技术
8.1 引言
8.1.1 MEMS强链的组成和工作原理
8.1.2 基于MEMS技术的强链整机集成研究
8.2 MEMS强链总体方案和设计技术
8.2.1 MEMS强链部件选型
8.2.2 MEMS强链总体方案和工作原理
8.2.3 MEMS强链各部分设计
8.3 MEMS强链的制作技术研究
8.3.1 驱动器(微电机)多层线圈定子和转子的制作工艺
8.3.2 多层复杂结构反干涉齿轮集一体化制作工艺研究
8.3.3 棘轮棘爪的加工工艺
8.3.4 支架、微电机轴、光开关耦合轮、垫圈、插片加工
8.3.5 精密显微装配
8.4 MEMS强链硬盘加密
8.4.1 系统结构与工作原理
8.4.2 身份认证与密钥管理
8.4.3 数据流硬件加解密
8.4.4 仿真与测试

第9章 总结与展望
9.1 全书总结
9.2 展望
参考文献
索引
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证