搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
数据算法:Hadoop/Spark大数据处理技巧
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787512395947
  • 作      者:
    Mahmound Parsian著
  • 出 版 社 :
    中国电力出版社
  • 出版日期:
    2016
收藏
编辑推荐
  市面上N0.1本关于Hadoop与Spark大数据处理技巧的教程,提供了丰富的算法和工具。
展开
作者简介
  Mahmoud Parsian,计算机科学博士,是一位热衷于实践的软件专家,作为开发人员、设计人员、架构师和作者,他有30多年的软件开发经验。目前领导着Illumina的大数据团队,在过去15年间,他主要从事Java (服务器端)、数据库、MapReduce和分布式计算的有关工作。Mahmoud还著有《JDBC Recipes》和《JDBC Metadata, MySQL,and Oracle Recipes》等书(均由Apress出版)。
展开
内容介绍
  《数据算法:Hadoop/Spark大数据处理技巧》介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这还概要介绍了MapReduce、Hadoop和Spark。
  主要内容包括:
  ■ 完成超大量交易的购物篮分析。
  ■ 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。
  ■ 使用超大基因组数据完成DNA和RNA测序。
  ■ 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。
  ■ 推荐算法和成对文档相似性。
  ■ 线性回归、Cox回归和皮尔逊(Pearson)相关分析。
  ■ 等位基因频率和DNA挖掘。
  ■ 社交网络分析(推荐系统、三角形计数和情感分析)。

展开
目录
序  1
前言  3
第1章二次排序:简介 19
二次排序问题解决方案  21
MapReduce/Hadoop的二次排序解决方案  25
Spark的二次排序解决方案 29
第2章二次排序:详细示例  42
二次排序技术 43
二次排序的完整示例 46
运行示例——老版本Hadoop API 50
运行示例——新版本Hadoop API 52
第3章 Top 10 列表 54
Top N 设计模式的形式化描述  55
MapReduce/Hadoop实现:唯一键 56
Spark实现:唯一键 62
Spark实现:非唯一键  73
使用takeOrdered()的Spark Top 10 解决方案 84
MapReduce/Hadoop Top 10 解决方案:非唯一键 91
第4章左外连接 96
左外连接示例 96
MapReduce左外连接实现 99
Spark左外连接实现 105
使用leftOuterJoin()的Spark实现 117
第5章反转排序 127
反转排序模式示例 128
反转排序模式的MapReduce/Hadoop实现 129
运行示例 134
第6章移动平均 137
示例1:时间序列数据(股票价格) 137
示例2:时间序列数据(URL访问数) 138
形式定义 139
POJO移动平均解决方案 140
MapReduce/Hadoop移动平均解决方案 143
第7章购物篮分析 155
MBA目标 155
MBA的应用领域 157
使用MapReduce的购物篮分析 157
Spark解决方案  166
运行Spark实现的YARN 脚本  179
第8章共同好友 182
输入 183
POJO共同好友解决方案 183
MapReduce算法 184
解决方案1: 使用文本的Hadoop实现 187
解决方案2: 使用ArrayListOfLongsWritable 的Hadoop实现 189
Spark解决方案  191
第9章使用MapReduce实现推荐引擎 201
购买过该商品的顾客还购买了哪些商品  202
经常一起购买的商品  206
推荐连接 210
第10章基于内容的电影推荐 225
输入 226
MapReduce阶段1 226
MapReduce阶段2和阶段3 227
Spark电影推荐实现 234
第11章使用马尔可夫模型的智能邮件营销  .253
马尔可夫链基本原理  254
使用MapReduce的马尔可夫模型 256
Spark解决方案  269
第12章 K-均值聚类  282
什么是K-均值聚类? 285
聚类的应用领域 285
K-均值聚类方法非形式化描述:分区方法 286
K-均值距离函数 286
K-均值聚类形式化描述 287
K-均值聚类的MapReduce解决方案 288
K-均值算法Spark实现 292
第13章 k-近邻 296
kNN分类 297
距离函数 297
kNN示例 298
kNN算法非形式化描述 299
kNN算法形式化描述  299
kNN的类Java非MapReduce 解决方案 299
Spark的kNN算法实现  301
第14章朴素贝叶斯  315
训练和学习示例 316
条件概率 319
深入分析朴素贝叶斯分类器 319
朴素贝叶斯分类器:符号数据的MapReduce解决方案 322
朴素贝叶斯分类器Spark实现  332
使用Spark和Mahout 347
第15章情感分析  349
情感示例 350
情感分数:正面或负面 350
一个简单的MapReduce情感分析示例 351
真实世界的情感分析  353
第16章查找、统计和列出大图中的所有三角形 354
基本的图概念  355
三角形计数的重要性  356
MapReduce/Hadoop解决方案  357
Spark解决方案  364
第17章 K-mer计数  375
K-mer计数的输入数据 376
K-mer计数应用 376
K-mer计数MapReduce/Hadoop解决方案 377
K-mer计数Spark解决方案 378
第18章 DNA测序 390
DNA测序的输入数据 392
输入数据验证  393
DNA序列比对 393
DNA测试的MapReduce算法  394
第19章 Cox回归  413
Cox模型剖析  414
使用R的Cox回归 415
Cox回归应用  416
Cox回归 POJO解决方案 417
MapReduce输入 418
使用MapReduce的Cox回归  419
第20章 Cochran-Armitage趋势检验 426
Cochran-Armitage算法 427
Cochran-Armitage应用 432
MapReduce解决方案 435
第21章等位基因频率 443
基本定义 444
形式化问题描述 448
等位基因频率分析的MapReduce解决方案 449
MapReduce解决方案, 阶段1  449
MapReduce解决方案,阶段2 459
MapReduce解决方案, 阶段3  463
染色体X 和Y的特殊处理 466
第22章 T检验  468
对bioset完成T检验  469
MapReduce问题描述 472
输入 472
期望输出 473
MapReduce解决方案 473
Spark实现 476
第23章皮尔逊相关系数 488
皮尔逊相关系数公式  489
皮尔逊相关系数示例  491
皮尔逊相关系数数据集 492
皮尔逊相关系数POJO 解决方案 492
皮尔逊相关系数MapReduce解决方案 493
皮尔逊相关系数的Spark 解决方案 496
运行Spark程序的YARN 脚本  516
使用Spark计算斯皮尔曼相关系数 517
第24章 DNA碱基计数 520
FASTA 格式  521
FASTQ 格式 522
MapReduce解决方案:FASTA 格式 522
运行示例 524
MapReduce解决方案: FASTQ 格式 528
Spark 解决方案: FASTA 格式  533
Spark解决方案: FASTQ 格式  537
第25章 RNA测序 543
数据大小和格式 543
MapReduce工作流 544
RNA测序分析概述 544
RNA测序MapReduce算法 548
第26章基因聚合  553
输入 554
输出 554
MapReduce解决方案(按单个值过滤和按平均值过滤) 555
基因聚合的Spark解决方案 567
Spark解决方案:按单个值过滤 567
Spark解决方案:按平均值过滤 576
第27章线性回归  586
基本定义 587
简单示例 587
问题描述 588
输入数据 589
期望输出 590
使用SimpleRegression的MapReduce解决方案 590
Hadoop实现类  593
使用R线性模型的MapReduce解决方案 593
第28章 MapReduce和幺半群 600
概述 600
幺半群的定义  602
幺半群和非幺半群示例 603
MapReduce示例:非幺半群  606
MapReduce示例:幺半群 608
使用幺半群的Spark示例 612
使用幺半群的结论 618
函子和幺半群  619
第29章小文件问题  622
解决方案1:在客户端合并小文件 623
解决方案2:用CombineFileInputFormat解决小文件问题 629
其他解决方案  634
第30章 MapReduce的大容量缓存  635
实现方案 636
缓存问题形式化描述  637
一个精巧、可伸缩的解决方案 637
实现LRUMap缓存 640
使用LRUMap的MapReduce解决方案 646
第31章 Bloom过滤器 651Bloom
过滤器性质 651
一个简单的Bloom过滤器示例  653

展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证