《流形粒子滤波算法及其在视频目标跟踪中的应用》研究流形上的粒子滤波算法,将粒子滤波视频跟踪系统的状态模型建立在流形上,在低维流形上实现状态采样,充分利用了状态空间的内蕴几何特性,为解决粒子退化问题,提高跟踪算法的效率、实时性和鲁棒性提供一种新的思路。探讨了基于自适应黎曼流形粒子滤波算法的红外小目标跟踪方法,在黎曼流形上进行在线学习和更新目标外形,采用加权欧几里得黎曼平均值估计表面协方差矩阵;研究了一种基于几何能量的流形聚类粒子滤波算法,利用流形上数据空间位置信息的几何曲率来表示几何能量,通过最小化能量得到流形的边界点,从而得到划分聚类的目的;采用射影变换表示目标图像区域的几何形变,将视频跟踪系统的状态模型建立在低维流形(李群)上,沿流形测地线进行状态采样,应用流形上的最优化算法在流形上计算样本内蕴均值,实现状态估计;构建了基于李群指数映射的李群正态分布,并将李群正态分布表示为最优重要性函数进行粒子采样。
《流形粒子滤波算法及其在视频目标跟踪中的应用》可供高等院校电子信息、自动化、计算机应用、应用数学等有关专业的高年级本科生和研究生,以及从事控制科学与工程、信号与信息处理领域的工程技术人员和研究人员参考阅读。
展开