第1章向量和张量基础
力学大师冯元桢说:“美丽的故事需要用美丽的语言来讲述,张量就是力学的语言。”本章只阐述向量和张量的基础知识,目的是为后面力学内容的讲述提供工具和便利,并不奢求涵盖整个张量分析的内容。
1.1向量的基本概念和表示
在三维欧几里得(Euclidean)空间中,同时具有大小和方向的量称为向量(或矢量),例如力、力矩、速度、加速度等,常用黑体字符表示,例如F,M,v,a等。只有大小的量称为标量,例如温度、时间、质量、能量等。在三维空间(为简明起见,略去欧几里得,下同)的笛卡儿坐标系中选取与全局正交坐标系坐标轴重合的正交标准基e0x,e0y,e0z,即e0i?e0j=δij(式中i,j分别表示x,y,z;δij称为Kronecker delta符号), 任一向量可表示为这组全局正交标准基的线性组合,例如,对于速度向量v有
向量式(1.1.1)的分量表示为
式(1.1.1)和式(1.1.2)可推广到n维空间。定义一组与n维空间中全局正交坐标系的坐标轴重合的正交标准基e01,e02, ,e0n,则任一n维向量v及其分量可分别表示为
根据爱因斯坦(Einstein)求和约定,式(1.1.3)可简化为
式中i称为哑标(dummy indices),表示此式要对i由1至n的整数求和。应注意的是,哑标总是成对出现,且可用相同取值范围的另一对字母任意代换,即
说明1.1.1:在矩阵和数值分析(如有限元分析)中采用向量矩阵表示时,向量通常表示列向量,即n×1向量。式(1.1.4)表明,在矩阵分析中通常的n维向量表示意味着基向量不仅是正交标准基,而且与全局正交坐标系的坐标轴重合。
说明1.1.2:向量v的转置表示为 vT=[v1v2 vn],为一1×n的行向量。
说明1.1.3:在有限元分析中,向量v中的分量可以同时包含具有不同物理意义和量纲的量,例如v1,v2,v3表示三维几何空间中沿笛卡儿坐标系x,y,z轴的速度,v4,v5,v6 分别表示温度,压力,质量等。
说明1.1.4:在离散空间中,向量v可以重复地列出定义在所有m个离散点上的速度、温度、压力、质量等物理量。
1.2向量的基本代数运算
1.2.1点积(内积)
对于三维空间中的两个向量u和v,它们的点积(dot product, inner product)定义为
式中u,v分别表示向量u,v的模,而u,v表示向量u和v之间的夹角。式(1.2.1)表明,两个向量的点积为标量。参考三维空间中任一组笛卡儿坐标系(可以不与全局正交坐标系坐标轴重合)定义一组正交标准基ex,ey,ez,并采用式(1.1.1)的形式分别表示向量u和v,则它们的点积可表示为u?v=∑3i=1∑3j=1uivjei?ej(1.2.2)注意到三维笛卡儿坐标系中正交标准基中各基向量之间的正交性,即
将式(1.2.3)代入式(1.2.2),并应用爱因斯坦求和约定可得到
将式(1.2.4)推广至n维空间,参考一组正交标准基(e1,e2, ,en)表示的任意两个向量u和v的点积可写为
在广泛应用于有限元分析的向量矩阵的表示形式中,两个向量的点积通常写为
以上阐述说明,点积是这样一个算子(operator),它作用在两个向量上得到一个标量。
1.2.2叉积 (外积)
对于三维空间中的两个向量u和v,它们的叉积(vector product, outer product)定义为一个向量w=u×v,其方向按右手螺旋法则定义为垂直于u和v所构成的平面(如图1.1所示),其绝对值(向量w的模)定义为以u和v为邻边所构成的平行四边形的面积,即
设e1,e2,e3是三维空间中任选的一组正交标准基,对其应用上述向量叉积定义,可得到
图1.1向量叉积定义
为简化上述表示,可定义作为标量的排列(permutation)符号
式(1.2.11)可具体写为
应用排列符号εijk,式(1.2.8)~式(1.2.10)可简洁地表示为
或写成
可以看到,叉积是这样一个算子,它作用在两个向量上得到一个向量。应注意的是,两个向量的叉积仅定义在三维空间中,且u,v,w三个向量构成一个右手系。在一些文献中,两个向量u,v的叉积有时也被表示为u∧v。
1.2.3混合积
对于三维空间中不共面的任意三个向量u,v和w,它们的混合积 ( (scalar) triple product)定义为
可以看到,混合积[u v w]为一标量,其物理意义为:当u,v,w构成右手系时,其值为正,反之为负;而它们的绝对值均表示以u,v,w为三个棱边所构成的平行六面体的体积。说明1.2.1:可以证明,由三个向量u,v,w的两两点积所构造的行列式等于以它们为棱边所构成的平行六面体体积的的平方,即
说明1.2.2:对于两个任意混合积[u v w\]和[u′v′w′\],同样可证明
1.2.4张量积(并矢)
在向量的点积计算中,若令一向量为u,另一向量为单位向量n (n=1),则(u?n)n表示向量u在方向向量n上的投影。因(u?n)为一标量,有
注意到式(1.2.21)右端项若采用向量矩阵形式可表示为在张量分析中定义上式中两个向量nn(在矩阵分析中表示为nnT)的并矢为张量积,即nnTunnu=Nu(1.2.23)
式(1.2.23)中的N=nn即为向量n与其自身的张量积(并矢)。与式(1.2.21)和式(1.2.22)相应的张量分量表示可写为njniui=njniui=Njiui=Nijuj(1.2.24)
应说明的是,由于,即Nij是对称的,这是式(1.2.24)最后一个等号的理由所在。以上通过式(1.2.21)所描述的特例引入了张量积的概念。一般地,两个向量a=aiei和b=bjej的张量积(并矢)(tensor product, dyadic product)定义为如下一个二阶张量C,表示为C=ab=aieibjej=aibjeiej=Cijeiej(1.2.25)
向量a,b可以具有不同维数,例如n维向量a和m维向量b,由此得到的张量积C为一n×m维的二阶张量。显然,张量积不满足交换律;即使向量a,b具有相同维数n,由于aibj≠biaj,ab=aibjeiej≠ba=ajbieiej(1.2.26)
式(1.2.26)相当于在向量运算中众所周知的如下不等式abT≠baT(1.2.27)说明1.2.3:张量积(并矢)的符号在某些著作或文献中被省略,即A=ab=ab(1.2.28)
因此对于在张量分析中的两个向量的点积表示,其点积符号不可省略。
1.3二维空间中非正交直线坐标系下的向量表示
为便于描述物理问题,除前述笛卡儿坐标系外,非正交直线坐标系也常被用于特定问题及其客观规律的描述,如板壳问题等。如图1.2(a)所示,g1,g2为二维空间中一非正交直线坐标系的参考向量,根据哑标求和约定,二维空间中任一向量r可表示为该参考向量的线性组合
(1.3.1)定义沿g1,g2方向的单位向量分别为
且有
式(1.3.3)中的不等号是由于单位向量i1,i2不正交。同样,对于参考向量g1,g2
有这是由于参考向量g1,g2既不正交,也不是单位向量。
应着重指出的是,向量r在参考向量g1,g2上的投影并不等于它相应的分量,这可由以下二式说明:
展开