搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
亚纯函数动力系统
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    7302130825
  • 作      者:
    郑建华著
  • 出 版 社 :
    清华大学出版社
  • 出版日期:
    2006
收藏
作者简介
    郑建华,清华大学数学科学系教授,博士生导师,基础数学研究所所长。 
    81年毕业于江西上饶师范专科学校,1987年硕士毕业于安徽师范大学数学系,获硕士学位,1992年博士毕业于中国科学院数学研究所,获博士学位。曾任教于江西上饶市第二中学和安徽大学,于1992年8月至今在清华大学教学科学系任教,1997年起任教授。 
    主要从事亚纯函数理论。
展开
内容介绍
    《清华大学学术专著:亚纯函数动力系统》主要介绍超越亚纯函数迭代的动力学,在一些方面也将涉及有理函数的动力学。《清华大学学术专著:亚纯函数动力系统》内容不仅包含了复动力系统中的基本理论,还介绍了大量的最新成果,而且力图从不同的角度或观点来介绍这些最新成果,或者简化原来烦琐的证明,或者给出不同的证明等,同时也将相关预备知识穿插在相关的章节中,以便读者阅读。《清华大学学术专著:亚纯函数动力系统》主要内容有这些方面: 
    亚纯函数周期点的存在性,给出恰当周期点个数的定量估计;双曲区域上的自映照与Mobius变换的共轭问题;各类周期域与游荡域的特性和存在性;Julia集的特性,如 Julia集的分布、单点分支和淹没分支的存在性、一致完全性以及Lebesgue测度等;亚纯函数族的稳定性和结构稳定性;Julia集的Hausdorff维数,尤其是具有代表性的几类亚纯函数Julia集的Hausdorff维数;最后是一类亚纯函数的可测动力学,确定遍历的 Gibbs不变测度的存在性以及Hausdorff维数,Gibbs测度熵和Lyapunov指数的关系。
展开
目录
第1章 基本亚纯函数迭代及预备知识
1.1 亚纯函数周期点
1.2 Fatou集与Julia集
1.3 逃逸至无穷的点集
1.4 Riemann曲面、基本群、覆盖空间
1.5 拟共形映照
1.6 双曲区域上的双曲度量
1.7 奇异值与逆函数的奇异性

第2章 双曲区域上的自映照
2.1 单位圆备用上的自映照
2.2 双曲区域上自映照的最终共轭

第3章 Fatou稳定域
3.1 周期稳定域
3.2 游荡城
3.3 无界稳定域的非存在性

第4章 Julia集
4.1 特殊的Julia集
4.2 稳定域的边界
4.3 Julia集一致完全界
4.4 Julia集单点分支与淹没分支
4.5 Julia集为复平面
4.6 Julia集的Lebesgue测度

第5章 亚纯函数族的稳定性
5.1 稳定性
5.2 结构稳定性

第6章 Julia集的Hausdorff维数
6.1 测度空间
6.2 Hausdorff维数的基本概念
6.3 Julia集的Hausdorff维数
6.4 Julia集的Hausdorff维数为2的例子

第7章 亚纯函数的可测动力学
7.1 可测动力学基本知识
7.2 Walters膨胀映照理论
7.3 超越亚纯函数的不变测度
索引
参考文献
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证