前言
第1章 混沌简介与知识准备
1.1 混沌学的产生与混沌概念的引入
1.2 预备知识
1.3 两种基本混沌的条件简化
习题1
第2章 一维混沌映射
2.1 Bernoulli移位映射的混沌表现
2.2 三角帐篷映射与蒙古包映射的混沌性
2.3 Li-Yorke定理
习题2
第3章 抽象空间上的混沌
3.1 度量空间上的Li-Yorke混沌
3.2 符号空间上的移位映射
3.3 Smale马蹄映射
3.4 其他混沌及其混沌之间的关系
3.5 拓扑空间上的混沌
习题3
第4章 拓扑熵
4.1 Adler拓扑熵
4.2 Bowen拓扑熵的定义
4.3 两种拓扑熵的一致性
4.4 马蹄、拓扑熵与Li-Yorke混沌的关系
习题4
第5章 二维自治系统与Hamilton系统
5.1 二维自治系统的初等奇点
5.2 平面Hamilton系统
5.3 同宿点理论
习题5
第6章 混沌的微扰判据
6.1 Melnikov函数
6.2 Melnikov定理的应用
习题6
附录 点集拓扑基础
参考文献
展开