搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
数据分析实战
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787115454539
  • 作      者:
    (日)酒卷隆治,(日)里洋平著
  • 出 版 社 :
    人民邮电出版社
  • 出版日期:
    2017
收藏
编辑推荐
如何恢复销售额?
哪种广告的效果会更好?
游戏用户为何会流失?
如何让组队游戏充满乐趣?
……
一线数据分析师教你用数据搞定!

1.通过8个真实的商业案例,学会用数据分析解决商业难题。
2.使用未经清洗的原始数据,体验真实的数据分析流程。
(在其他同类书中,经常故意使用和书中内容高度相符的数据来分析,但是读者会发现在实际的业务中使用书中的方法却很困难,数据分析实战 的各个案例中提供的都是zui原始的数据,需要在使用前进行加工。针对这些数据,如何灵活使用统计解析工具来处理,作者也给出了详细的介绍。)
3.网罗柱状图、交叉列表统计、A/B测试、多元回归分析、逻辑回归分析、主成分分析、聚类、决策树分析、机器学习等数据分析方法。
4.数据分析实战 使用的数据和R脚本代码可下载。
展开
作者简介
酒卷隆治(作者)
浦和出身。环境学博士毕业。就职于株式会社DRECOM数据分析部门。擅长人类行动日志的分析。现主要从事社交游戏和在线服务的日志分析工作。

里洋平(作者)
种子岛出身。就职于株式会社DRECOM数据分析部门。擅长使用R语言进行数据分析,现主要从事数据分析环境的搭建和数据分析工作。合著有《数据科学养成读本》(技术评论社)、《R包使用手册》(东京图书)。

肖峰(译者)
日本东京工业大学计算机工学博士。曾在日本乐天株式会社乐天技术研究所从事研究工作。2013年回国后加入新浪,现任新浪个性化推荐团队算法负责人。拥有丰富的数据分析与建模能力。
展开
内容介绍
数据分析实战 由实战经验丰富的两位数据分析师执笔,数据分析实战 首先介绍了商业领域里通用的数据分析框架,然后根据该框架,结合8个真实的案例,详细解说了通过数据分析解决各种商业问题的流程,让读者在解决问题的过程中学习各种数据分析方法,包括柱状图、交叉列表统计、A/B测试、多元回归分析、逻辑回归分析、聚类、主成分分析、决策树分析、机器学习等。特别是书中使用的数据都是未经清洗的原始数据,对如何加工数据以用于数据分析也进行了详细的介绍。读者可以使用R语言实际操作数据,体验真实的数据分析流程,避免纸上谈兵。
展开
目录
第1章 数据科学家的工作 1
1.1 什么是数据科学家 2
1.2 3种类型的数据科学家 5
1.3 数据科学家的现状 8
第2章 商业数据分析流程 9
2.1 数据分析的5个流程 10
2.2 现状和预期 12
2.3 发现问题 13
2.4 数据的收集和加工 19
2.5 数据分析 24
2.6 解决对策 27
2.7 小结 29

[分析基础]篇
第3章 案例1—柱状图
为什么销售额会减少 35
3.1 现状和预期 36
3.2 发现问题 38
3.3 数据的收集和加工 39
3.4 数据分析 46
3.5 解决对策 49
3.6 小结 50
3.7 详细的R代码 51

第4章 案例2—交叉列表统计
什么样的顾客会选择离开 61
4.1 现状和预期 62
4.2 发现问题 64
4.3 数据的收集和加工 65
4.4 数据分析 69
4.5 解决对策 73
4.6 小结 75
4.7 详细的R代码 76

第5章 案例3—A/B测试
哪种广告的效果更好 83
5.1 现状和预期 84
5.2 发现问题 86
5.3 数据的收集和加工 88
5.4 数据分析 96
5.5 解决对策 98
5.6 小结 99
5.7 详细的R代码 100

第6章 案例4—多元回归分析 105
如何通过各种广告的组合获得更多的用户 105
6.1 现状和预期 106
6.2 发现问题 108
6.3 数据的收集 112
6.4 数据分析 114
6.5 解决对策 117
6.6 小结 119
6.7 详细的R代码 120

[分析应用]篇
第7章 案例5—逻辑回归分析
根据过去的行为能否预测当下 125
7.1 期望增加游戏的智能手机用户量 126
7.2 是用户账号迁转设定失败导致的问题吗 128
7.3 在数据不包含正解的情况下收集数据 131
7.4 验证是否能够建立模型 144
7.5 解决对策 148
7.6 小结 149
7.7 详细的R代码 150

第8章 案例6—聚类
应该选择什么样的目标用户群 163
8.1 希望了解用户的特点 164
8.2 基于行为模式的用户分类 165
8.3 把主成分作为自变量来使用 168
8.4 进行聚类 176
8.5 解决对策 180
8.6 小结 181
8.7 详细的R代码 182

第9章 案例7—决策树分析
具有哪些行为的用户会是长期用户 193
9.1 希望减少用户开始游戏后不久就离开的情况 194
9.2 了解“乐趣”的结构 195
9.3 把类作为自变量 198
9.4 进行决策树分析 210
9.5 解决对策 213
9.6 小结 215
9.7 详细的R代码 216

第10章 案例8—机器学习
如何让组队游戏充满乐趣 233
10.1 使组队作战的乐趣最大化 234
10.2 利用数据分析为服务增加附加价值 236
10.3 在数据中排除星期的影响 238
10.4 构建预测模型 241
10.5 解决对策 248
10.6 小结 249
10.7 详细的R代码 250
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证