本书是一本数据分析宝典,书中精讲了数据分析的各种方法,如七何分析法、演绎树分析法、金字塔原理、4P营销理论、SWOT分析法、比较分析法、平均分析法,回归分析法、检验分析法等,帮助读者快速从新手成为数据分析高手!
全书所有内容零基础、全图解,通过3大数据分析工具+7大分析步骤+13大整理数据的方法+17大美化图表法+20大数据分析法+70多个实用案例+100多个专家知识补充+100多个数据分析图解+450多张精美图片,深度剖析数据分析的精华之处,让您一书在手,即可彻底读懂数据分析,从菜鸟成为达人!
本书是一本数据分析宝典,精讲了数据分析的各种方法,如七何分析法、演绎树分析法、金字塔原理、4P营销理论、SWOT分析法、比较分析法、平均分析法、回归分析法、检验分析法等,帮助读者快速从新手成为数据分析高手!
本书通过3大数据分析工具+7大分析步骤+13大整理数据的方法+17大美化图表法+20大数据分析法+70多个实用案例+100多个专家知识补充+100多个数据分析图解+450多张精美图片,深度剖析数据分析的精华之处。让您一书在手,即可彻底读懂数据分析,从菜鸟成为达人!
本书共分为10章,具体内容包括走进数据分析的世界、落实数据分析操作、掌握数据整理的方法、掌握数据分析秘诀、使用回归+历史引申、需要方差+“显著”、数据也要美美的、数据分析函数学习、与同行之间的角逐、淘宝指数+百度指数+好搜指数。
本书结构清晰、语言简洁、图解丰富,适合4类人群:一是初学数据分析的新手,二是从事数据相关行业的个人与公司,三是有意学习数据分析的白领阶层、工薪阶层、学生等,四是希望通过数据分析“挖金”的个体老板、企业高管、政府媒体、网络数据分析师等人群。
第1章:启蒙:走进数据分析的世界
如今是一个数据大爆炸时代,数据的应用非常广泛,例如,数据能让企业分析出自己的用户群体,数据能让科学变得更加先进,数据能记录人们的生活轨迹等。总之,数据分析是企业打开另外一扇商业大门的钥匙。
1.1 认 清 数 据
对于数据,很多人都持以迷茫的态度,认为数据只是单纯的数字,并不会给人们带来什么价值。可是这样的想法,是大错特错的,若数据没有价值,那沃尔玛是如何想出"啤酒+尿布"的奇招,那"魔镜"是如何预知石油市场走向的。
如今有太多的案例能够证明数据分析的价值,只是有一部分人群对于数据分析还不够重视,没有很好地认识数据分析的价值。因此,下面进一步深挖数据,带领人们"知数据的根,揭数据的谜"。
1.1.1 听--数据在说话
若有人想要进入数据分析行业,就必须知道数据能表达什么,这个表达的概念也许在一时之间不是清晰的,不过没有关系,数据是需要人们进行挖掘的、需要"倾听者"的。
例如,对于一张生活照,若拍照的人没有说明照片背后的意义,那么人们定然不会知道其背后的含义,只会认为这只是一张照片而已。可是对于照片中的主人公来说,这张照片也许拥有某种特定的含义。对于数据分析师来说,可以从照片上看出主人公的性格、爱好,拍摄者的拍摄习惯等隐晦的信息。总之,数据是无处不在的,只要人们有需求,愿意去分析,数据就能打开"话匣子",将自己的故事讲给人们听。
一般来说,数据是以数值体现出来的,可是随着时代的变迁,数据慢慢地得到扩展,如图1-1所示。
图1-1 数据的扩展
在生活中,形成连接时,是最能"倾听"到数据的声音的,如图1-2所示。
图1-2 从连接中产生数据
例如,社群中用户与用户之间的交流、用户与企业之间的交流、用户发布的信息、用户反馈的信息等,都可以成为企业分析用户行为习惯以及需求的数据。
专家提醒
企业千万不要将数据弱化,认为数据只是一堆不切实际的数字,不然在这个数据大爆炸时代,企业的命运将会危在旦夕。因此,企业需要聘用一些比较有能力的数据分析师,让他们与数据沟通,倾听数据中的故事,为企业带来红利。
1.1.2 看--数据在展现
世间万物皆有自己独有的特点,数据也不例外。下面介绍数据本身的5个特点,如图1-3所示。
图1-3 数据的特点
专家提醒
数据分析师在进行数据分析时,需要把握好数据的特点,这样得出的结论实用价值就比较大。
1.1.3 触--分析的价值
对于音乐来说,从数据中能分析出哪种类型的音乐容易引起人们的关注;对于电视台来说,从数据中能分析出哪种影视题材是人们所喜欢的;对于手机来说,从数据中能分析出人们比较喜欢用哪些手机功能等。
由此可知,分析出来的数据,几乎都是围绕"人"展开的,都是以满足人们的喜好、需求而进行的。但这只是一部分,企业千万不要被这个现象迷惑了,数据分析的价值不只在于"人",它还涉及了其他方面。
例如,对于企业而言,通过数据能分析出其现状,如图1-4所示。
图1-4 能分析出企业现状
数据还会涉及产品从制作到发布的各个事项,如图1-5所示。
图1-5 能分析出产品从制作到发布的各个事项
专家提醒
若一个企业的领导人通过市场调查,分析所得到的数据,能判定市场动向,则企业就能根据数据,制订合适的产品生产及销售计划。
总之,企业能通过数据分析,获取用户信息,制定企业投放产品的方式、营销策略等。
除此之外,数据还能面向多种决策功能,并具有生产力、拓宽市场边界等实用价值,如图1-6所示。
图1-6 能涉及的决策部分事项
专家提醒
总而言之,数据分析价值的涉及面极其广阔,只要数据分析师耐心地挖掘,定能通过数据得到意想不到的"商业法宝"。
1.1.4 嗅--数据的重量
随着互联网的发展,越来越多的人意识到了数据分析的重要性。例如,淘宝曾推出过时光机服务,就是根据记录淘宝买家的消费记录、浏览记录、个人信息等数据,构成一个"回忆消费网",让淘宝买家从这些记录中,勾起自己的消费记忆,进一步促进消费者进行消费。
时光机不仅会使用户产生温馨而美好的消费记忆,还能让企业得知消费者的消费习惯。
下面进一步了解数据分析的重要性,如图1-7所示。
图1-7 数据分析的重要性
1.2 发 展 前 景
数据分析是时代下的潮流产物,更是随着时代的发展、变迁而蓬勃发展的"宝物",下面进一步了解数据分析的发展前景。
1.2.1 需求--分析人才
通过研究表明,如今有75%的企业明确表示,数据分析是企业运营、产品生产等方面不可或缺的决策手段,并且这些企业都会设立一个数据分析部门或者聘用的数据分析方面的人才。
可见,对数据分析人才的需求正在急剧地呈现上升趋势。也正因此,如今数据分析人才的培养机构才会如火如荼地开展。这样的机构不仅吸引富有经验的数据分析师们,分享自己的实战经验,而且通过在网络上提供付费教程,给他们开辟了一条"挖金"之路。当然,这也更加方便了那些对数据分析感兴趣、有需求的人群进行学习、理解、使用,久而久之,也就带动了数据分析行业的发展。
如今,像腾讯、知乎、搜狐等大规模的企业,都展现了对数据分析人才的渴望,如图1-8所示。
图1-8 某企业对数据分析人才的招聘要求
专家提醒
如今,数据分析工作岗位在全球大约有400多万个,其中有180多万个工作岗位出现在美国,可见美国对数据分析人才的看重。根据某公司的预计,到2018年,美国将会有大约15万~20万的数据分析人才缺口,这足以证明,在数据分析人才这一块,是极其紧缺又必不可少的。
1.2.2 持续--发展趋势
随着技术的发展,互联网的更新换代,数据的采集技术、存储技术、处理技术都得到足够广阔的发展,将数据分析的重要性提升了一个高度。
研究表明,在2008-2013年的5年中,人类行为所产生的数据量增长了9倍,而在接下来的9年中,将会达到28倍,可见数据的产生量是多么的巨大。某软件巨头公司,曾预计到2020年,全球数据的使用量将达到大约30 ZB,可见人们对数据的需求是非常大的,这足以表明如今人们生活在数据的庇护下,实现了一个循环,即"生产数据,运用数据"。
随着大数据时代的到来,企业对数据分析的需求大幅上升,需要借助数据分析专业服务机构的服务,进行有效的数据分析,如图1-9所示。
随着移动端的发展,移动支付、LBS(Location Based Service)位置服务等技术的崛起,数据呈现出"非结构化",而这种"非结构化"的数据,只要加以分析,即可给企业的商业模式和营销模式带来新的机会,如图1-10所示。
图1-9 数据分析专业服务机构
图1-10 "非结构化"数据的概念
"非结构化"数据具有4大作用,如图1-11所示。
图1-11 "非结构化"数据的作用
专家提醒
结构化的数据,一般是由数字表达出来的信息,方便计算机和数据库技术进行计算、处理,它具有业务洞察力,能影响企业老板在业务方面的决策。而对于非结构化的数据,是难以量化的,其形式多样。
如今数据分析技术正在不断更新,能促使企业在某些决策方面,做到科学务实、脚踏实地,帮助企业做出理性、正确的决策。
随着企业对数据分析服务需求的不断增强,必然会促进专业数据分析从业机构的行业经验、专业能力的服务水平的提升,这样就进一步增强了数据分析师的技术水平与数据分析的实用价值。
1.3 职 业 要 求
随着数据分析的发展,数据分析师的职业前景越来越美好,下面就来了解一下数据分析师的职业要求。
1.3.1 了解--任职方向
一般来说,数据分析师的发展方向有3个,包括企业、数据分析机构以及政府,其中企业是最需要数据分析人才的。
很多企业都设有专门的数据分析岗位,来满足企业数据分析的需求,如中国移动、腾讯、联想等企业,都会有专门的数据分析岗位。
不同的企业会有不同的关于数据分析岗位的建设,下面大致了解数据分析师常见职称的要求,如表1-1所示。
表1-1 在企业中数据分析师常见职称
职 称
要 求
数据分析员
处理公司日常数据的基础工作,需要知道数据的储存与运算、报表的管理、分析报告的制作,并具有良好的沟通能力等
初级数据分析师
掌握数据库知识,熟知基本的统计分析知识,掌握Excel软件,具有良好的PPT展示能力,具有较强的逻辑思维能力等
中级数据分析师
除了具有初级数据分析师的能力之外,还需要具备商业意识等
高级数据分析师
除了具有中级数据分析师的能力之外,还需要善于总结、快速响应问题,并能胜任数据挖掘工作等
数据分析工程师
需要了解数据分析与挖掘的理论知识,掌握统计分析工具的应用,具有编程开发与数据结构算法的能力等
续表
职 位
要 求
客户分析专员
指专门分析、管理客户服务方面的人才,一般需要掌握客服管理知识、用户行为分析法、数据分析基础知识等
专家提醒
在企业中承担数据分析师的工作,需要具备3个方面的条件,才能无阻碍地实现自我价值。
* 自己够专业,数据分析基础知识够牢固。
* 企业领导重视数据分析。
* 能及时得到需要的资料。
在现实生活中,有一些小规模的公司,会选择第三方数据研究机构,进行数据的把控,例如,市场研究公司、咨询公司、艾瑞等,届时数据分析师就可以到这类研究机构中进行数据方面的工作。
除此之外,政府部门也需要数据分析人才,政府部门通过数据分析可以进行科学研究、国情的调整,进行居民生活消费把控等。一般来说,政府部门关于数据分析的任职部门分为两类,如图1-12所示。
图1-12 政府需要数据分析师的部门
专家提醒
无论哪种数据分析职位,数据分析师都需要抓牢数据分析基础知识,扩展一些数据分析方面的知识。只有掌握知识,才能掌握自己的任职命运。
1.3.2 掌握--分析方法
当数据分析师在应聘时,第一个会被问到的问题,大多都是:"你会几种数据分析方法?分别能用来做什么?"由此可知,数据分析师的职业要求中,定然包括数据分析方法的使用。
数据分析师只有熟练运用数据分析方法,才能面对一堆碎片化的数据,快速地进行数据分析工作,有效地将数据背后所隐藏的"故事"挖掘出来,将数据价值最大化,促进企业运营。
一般常见的数据分析方法有12种,如表1-2所示。
表1-2 常见的数据分析方法
基础数据分析方法
高级数据分析方法
比较分析法
回归分析
平均分析法
相关分析
分组分析法
聚类分析
立体分析法
假设检验
结构分析法
因子分析
金字塔原理
对应分析
1.3.3 巧用--分析工具
面对庞大的数据,数据分析师不可能单凭自己在纸上记录,利用计算器进行计算,并挖掘数据背后的"故事";而是需要借助数据分析工具,进行高效的、实用的数据分析操作,才能达到事半功倍的效果。
专家提醒
对于初学者来说,Excel数据分析工具是最适合使用的,它容易上手,也是最基本、较全面的数据分析工具。
下面以4个层次,进一步划分数据分析工具,如表1-3所示。
表1-3 数据分析工具
数据存储安全
制作数据报表
常用数据分析
数据美化展示
MySQL
Tableau
Excel
R
LANguard
FineReport
SAS
Gephi
Microsoft Office Access
Style Report
SPSS
PowerPoint
1.3.4 拓展--管理能力
只有具备较强逻辑思维的人,才能轻松地胜任数据分析的工作,在确定分析思路时,可以借助管理学的知识,增强分析思路,确定其分析目的。
对数据分析师来说,管理学知识有5点作用,如图1-13所示。
图1-13 管理学知对数据分析师的作用
专家提醒
对于数据分析新手而言,利用管理学知识能有效地管理分析时间,避免出现拖延、无法分辨出分析内容的前后顺序等现象。
1.3.5 拥有--设计能力
数据分析师还需要做的事,就是让数据避免枯燥,让看到数据的人觉得美观、容易阅读。
美观的数据报告设计能增加可读性,其中图形的选择、版式的设计、颜色的搭配等,都需要掌握一定的设计原则,才能把分析出来的数据结果,精美、清晰地呈现出来,如图1-14所示。
图1-14 美观的数据报告
1.3.6 增强--表达能力
数据分析师不仅是将数据分析出来就可以了,还需要将数据背后的"故事"告诉自己的领导,而数据"故事"的好坏,是否有价值,大部分还是要靠数据分析师的表达能力。
若数据分析师的表达能力较强,能在短时间内将相对有用的重点告知领导,则对于领导来说数据分析师分析出来的结论是能影响决策的,对于数据分析师来说也没有"白忙活"。
若数据分析师的表达能力不强,没有将一个正确的结论及时告诉领导,则会给企业带来一定的损失,而数据分析师也会被认为执行能力不强,很有可能面临被辞退的命运。
数据分析师与产品经理、运营经理、实施经理等一部分人群交流时,语言的表达能力是必不可缺的一环,但仅仅依靠语言是不够的,还需要有一定的组织能力、总结能力以及团队合作意识,才能让分析出来的现象和得出的结论有一个好"归宿"。
1.3.7 熟知--企业业务
不同的企业有不同的业务,数据分析师必须要熟知自己所在企业的业务,只有这样才能实现高效、实用的数据分析操作。若数据分析师脱离了企业业务背景,那么分析出来的结果必然会偏离原本的轨道,导致实用性不强。
对于刚进企业的新手而言,想要一蹴而就地熟知企业业务是很难实现的,数据分析新手,可以通过以下几点来了解,如图1-15所示。
图1-15 数据分析新手入门要点
……
第1章 启蒙:走进数据分析的世界 1
1.1 认清数据 2
1.1.1 听--数据在说话 2
1.1.2 看--数据在展现 4
1.1.3 触--分析的价值 4
1.1.4 嗅--数据的重量 6
1.2 发展前景 7
1.2.1 需求--分析人才 7
1.2.2 持续--发展趋势 8
1.3 职业要求 10
1.3.1 了解--任职方向 10
1.3.2 掌握--分析方法 12
1.3.3 巧用--分析工具 12
1.3.4 拓展--管理能力 13
1.3.5 拥有--设计能力 13
1.3.6 增强--表达能力 14
1.3.7 熟知--企业业务 14
第2章 步骤:落实数据分析操作 17
2.1 操作步骤 18
2.1.1 清晰--分析目的 18
2.1.2 获取--数据来源 18
2.1.3 挑选--数据加工 21
2.1.4 进行--数据分析 22
2.1.5 实现--数据挖掘 23
2.1.6 展示--数据体现 24
2.1.7 制作--数据报告 26
2.2 操作误区 30
2.2.1 脱离--分析轨道 31
2.2.2 学会--报告美观 31
第3章 实操:掌握数据整理的
方法 33
3.1 数据排序 34
3.1.1 规则--数据升序 34
3.1.2 单列--快速排序 35
3.1.3 多列--高级排序 37
3.1.4 无限--自定义排序 40
3.2 数据筛选 44
3.2.1 简单--单条件筛选 44
3.2.2 复杂--多条件筛选 46
3.2.3 升级--高级筛选 49
3.2.4 随心--自定义筛选 51
3.2.5 秘技--快速双筛选 53
3.3.6 去除--重复值筛选 55
3.3 数据汇总 59
3.3.1 规则--分类汇总 59
3.3.2 实现--汇总数据 60
3.3.3 善用--多字段汇总 62
第4章 方法:掌握数据分析秘诀 65
4.1 摆正思路 66
4.1.1 建立框架--七何
分析法 66
4.1.2 问题分层--演绎树
分析法 69
4.1.3 涉及环境--PEST
分析法 71
4.1.4 建立逻辑--金字塔
原理 73
4.1.5 业务指导--4P营销
理论 75
4.1.6 竞争战略--SWOT
分析法 77
4.2 应用分析 80
4.2.1 寻找差距--比较
分析法 80
4.2.2 数量特征--平均
分析法 82
4.2.3 归纳数据--分组
分析法 85
4.2.4 交叉计算--立体
分析法 90
第5章 预测:使用回归+历史引申 95
5.1 回归分析 96
5.1.1 基础--一元回归 96
5.1.2 扩充--多元回归 109
5.2 非线回归 112
5.2.1 稳定--对数回归 113
5.2.2 变动--多项回归 117
5.3 历史引申 120
5.3.1 加权--指数平滑 120
5.3.2 算术--移动平均 124
第6章 检验:需要方差+
"显著" 127
6.1 方差分析 128
6.1.1 单个--单因素方差 128
6.1.2 多个--双因素方差 131
6.2 显著检验 138
6.2.1 平均--u检验 138
6.2.2 均值--t检验 143
第7章 亮眼:数据也要美美的 149
7.1 美化表格 150
7.1.1 区分数据--色阶 150
7.1.2 指定数据--突出 152
7.1.3 代表高低--数据条 154
7.1.4 体现特征--图标集 156
7.1.5 图表结合--迷你图 158
7.2 转换图形 160
7.2.1 对比帮手--条形图 161
7.2.2 变化趋势--折线图 168
7.2.3 对比差距--平均线图 173
7.2.4 流程分析--倒三角图 177
7.2.5 数据层次--阶梯图 185
7.2.6 突出重点--饼图 189
7.2.7 加强展现--重坐标图 192
7.2.8 华丽有质--圆珠图 194
7.2.9 财务指标--蜘蛛网图 198
7.2.10 工作进度--温度计
式图 200
7.3 文本展示 202
7.3.1 形象生动--插入图片 202
7.3.2 巧做逻辑--SmartArt 204
第8章 扩展:数据分析函数学习 209
8.1 时间函数 210
8.1.1 组合日期--DATE 210
8.1.2 突出实时--TODAY 212
8.1.3 推算工作日--
WORKDAY 214
8.1.4 提出月份--MONTH 217
8.1.5 时分秒值--TIME 218
8.2 逻辑函数 219
8.2.1 判断检查--IF 220
8.2.2 满足条件--AND 221
8.2.3 参数求反--NOT 223
8.2.4 捕捉错误--IFERROR 224
8.3 求值函数 225
8.3.1 最大值--MAX 226
8.3.2 最小值--MIN 227
8.3.3 数据个数--COUNT 228
8.3.4 不计空格--COUNTA 229
8.3.5 数据汇总--SUM 231
8.3.6 指定求和--SUMIF 232
8.3.7 平均值--AVERAGE 234
8.3.8 乘积计算--PRODUCT 235
8.4 处理错误 237
8.4.1 关于日期--"#####" 237
8.4.2 关于公式--
"#NAME?" 237
8.4.3 关于引用--
"#NULL" 238
8.4.4 关于参数--
"#VALUE" 239
8.4.5 关于空白--
"#DIV/0!" 240
8.4.6 寻找错误--使用帮助 241
第9章 竞争:与同行之间的角逐 245
9.1 知己知彼 246
9.1.1 好处--扩展战略 246
9.1.2 要点--找准方向 248
9.1.3 类型--了解对手 249
9.2 寻找数据 250
9.2.1 入手--对手名称 251
9.2.2 成为--对手用户 252
9.2.3 进入--对手官网 253
9.2.4 查找--招聘信息 254
9.2.5 运用--分析平台 255
9.3 胜券在握 255
9.3.1 差异--比较分析 255
9.3.2 行业--波特分析 256
第10章 工具:淘宝指数+百度指数+
好搜指数 259
10.1 淘宝指数 260
10.1.1 初入--发展历程 260
10.1.2 进入--使用功能 261
10.1.3 深入--使用步骤 263
10.2 百度指数 270
10.2.1 补充--功能模块 270
10.2.2 吸纳--操作步骤 271
10.3 好搜指数 275
10.3.1 涉及--功能详情 275
10.3.2 学习--分析步骤 276