本书是高级深度学习技术的综合指南,内容包括自编码器、生成对抗网络(GAN)、变分自编码器(VAE)和深度强化学习(DRL),在这些技术的推动下AI于近期取得了令人瞩目的成就。本书首先对多层感知器(MLP)、卷积神经网络(CNN)和循环神经网络(RNN)进行了概述,这些是本书中介绍的更高级技术的构建模块。之后探索了包括ResNet和DenseNet在内的深度神经网络架构以及如何创建自编码器。读者将学习如何使用Keras和TensorFlow实现深度学习模型,并进一步实现其高级应用。随后,读者将会了解到有关GAN的所有知识,以及认识到其如何将AI性能提升到新的水平。在此之后,读者可快速了解VAE的实现方式,并将认识到GAN和VAE是如何具备生成数据的能力的,并且使所生成的数据对人类来说极具说服力。因此,该类方法已成为现代AI的一个巨大进步。为充分了解该系列相关先进技术,读者将会学习如何实现DRL,例如深度Q-Learning和策略梯度的方法,这些方法对于AI在现代取得很多成就至关重要。
展开