“基础知识+算法原理+经典案例”,从全连接网络到复杂模型,从数据清洗到翻译模型,一本书轻松搞定Keras。
本书适合读者:人工智能深度学习爱好者、算法工程师、计算机视觉专业相关学生、机器学习深度学习等人工智能化各类从业人员
本书特色:
1. 入门门槛低,内容安排符合学习规律
从搭建环境学起——不同环境下相关软件和工具的下载和安装——深度学习基础理论——最后通过Keras实现深度学习的各类经典应用。由简到难,逐步深入,适合深度学习和机器学习零基础的读者学习。
2. 注重新手友好性,理论结合实践
作者以学生的视角,将自己Keras实际学习过程中的经验进行积累,让新手更容易上手。
在具体介绍过程中给出短小精悍的示例,让读者能边学习边实践,缩短新手与老手之间的差距。
3. 技术面广泛,注意技巧丰富
本书内容涵盖10种Python常用数据结构、5种主流数据分析工具、卷积神经网络、序列处理、函数式API及应用、Keras在深度生成式模型中的应用等。包括5个综合实战案例,所选案例涉猎广泛而丰富,既有计算机视觉领域的图像分类问题的经典案例,也有基于神经网络的翻译系统实战。在代码示例中,不仅仅包含了模型构建和设计的核心思想,同时也兼顾了新手容易犯错的细节展示。
Keras作为深度学习流行的框架之一,是一个用Python语言编写的开源人工神经网络库。《Keras深度学习》一书从新手角度出发,系统介绍了Keras深度学习技术,从Python数据处理开始,到深度学习理论,再到Keras各种代码实战,全书秉承实例讲解的方式,降低学习难度。
《Keras深度学习》全书共8章,前4章介绍了Keras的基础环境搭建和前端基础知识,包括Python数据编程、Python常用工具包和深度学习基本原理等;后4章介绍Keras深度学习方法与实战案例,包括使用Keras构建卷积神经网络、使用Keras进行序列处理、应用Keras实现更加精细化模型定制的函数式API、使用Keras实现GAN和VAE在内的多种深度生成式学习模型等。
《Keras深度学习》内容由浅入深、语言通俗易懂,从基本原理到实践应用、从基础神经网络到复杂模型的深度剖析,全书遵循学习规律,让读者在循序渐进的学习中深刻体会到Keras作为深度学习框架的魅力。
《Keras深度学习》适合想要了解深度学习、熟悉Python但不熟悉框架的初学者阅读,也适合各大高等院校或培训机构人工智能相关专业的学生学习。深度学习应用研究人员、深度学习爱好者、人工智能化产业从业人员、大数据从业人员、算法工程设计实现工程师、模型与架构设计等相关领域工程师、计算机视觉领域入门爱好者以及其他渴望入门深度学习相关领域的人士均可选择本书参考学习。
深度学习各种应用框架的发展都非常迅速,而切实地掌握一项框架还是需要认真地从一本书学起。关于Keras的入门书籍有很多也各有干秋,但是本书*大的特点是作者从自己的Keras实际学习经历出发,并把技术积累的过程进行总结,由浅入深详细地向读者介绍了Keras深度学习技术,如何从小的项目到大的工程,并详实地考虑每一个细节,内容非常充实。读者通过阅读本书能够掌握Python数据处理技术和Keras深度学习基础知识、提升自己的技能储备、锻炼自己的思维能力。
——姜沛林 西安交大副教授人工智能学会自然语言理解专委会委员
此书针对Keras深度学习深入浅出地进行讲解,以实战演练的方式给读者展现了Keras的强大功能,体现了它易于实现的强应用性。同时,这本书不失严谨性,每一处代码都是作者亲身实验所得,充分体现了此书质量方面的保证。对于在深度学习领域中想要快速上手Keras框架的读者来说,这是一本非常实用且易懂的好书。
——袁涛 Intel资深IC设计工程师
Keras是一个用Python编写的高级神经网络APl,希望能够让用户的工作效率更高,能够比竞争对手更快地尝试更多创意。而本书则是为深度学习的初学者设计的,同样希望读者能够更深刻、更高效地理解和使用Keras。作者将丰富的经验分享给各位初学者,在具体讲解时非常注重细节,将每个模块以及一些代码的疑难点都解释得非常清楚,是Keras入门不可多得的好书。
——陈铮 依图科技资深前端工程师
本书结合大量实际案例,由浅入深地从Python的入门级别大数据实践,逐步深入到基于Keras的深度学习技术的探讨。通过图文并茂以及项目实战的代码讲解,提高读者的理论能力和化和实践能力。
——祝继华 西安交大副教授