深度学习应用所使用的大部分数据是由自然语言处理(NLP)提供的,而TensorFlow是目前比较重要的深度学习框架。面对当今巨量数据流中众多的非结构化数据,本书详细讲解如何将TensorFlow与NLP二者结合以提供有效的工具,以及如何将这些工具应用于具体的NLP任务。
本书首先介绍NLP和TensorFlow的基础知识,之后讲解如何使用Word2vec及其高级扩展,以便通过创建词嵌入将词序列转换为深度学习算法可用的向量。本书还介绍如何通过卷积神经网络(CNN)和递归神经网络(RNN)等经典深度学习算法执行句子分类和语言生成等重要的NLP任务。你将学习如何在NLP任务中应用高性能的RNN模型(比如长短期记忆单元),还将认识神经机器翻译,并实现一个神经机器翻译器。
通过阅读本书,你将学到:
NLP的核心概念和各种自然语言处理方法
使用TensorFlow函数创建神经网络以完成NLP任务
将海量数据处理成可用于深度学习应用的单词表示
使用CNN和RNN执行句子分类和语言生成
使用最先进的RNN(如长短期记忆)执行复杂的文本生成任务
从头开始编写一个真正的神经机器翻译器
未来的NLP趋势和创新
1章是对NLP的简单介绍。该章将首先讨论我们需要NLP的原因。接下来,将讨论NLP中一些常见的子任务。之后,将讨论NLP的两个主要阶段,即传统阶段和深度学习阶段。通过研究如何使用传统算法解决语言建模任务,我们将了解传统阶段NLP的特点。然后,将讨论深度学习阶段,在这一阶段中深度学习算法被大量用于NLP。我们还将讨论深度学习算法的主要系列。后,将讨论一种基本的深度学习算法:全连接神经网络。该章结束时会提供一份路线图,简要介绍后面的内容。
第2章介绍Python TensorFlow库,这是我们实现解决方案的主要平台。首先在TensorFlow中编写一段代码,执行一个简单的计算,并讨论从运行代码到得到结果这一过程中到底发生了什么。我们将详细介绍TensorFlow的基础组件。把Tensorflow比作丰富的餐厅,了解如何完成订单,以便进一步加强对TensorFlow的理解。稍后,将讨论TensorFlow的更多技术细节,例如数据结构和操作(主要与神经网络相关)。后,我们将实现一个全连接的神经网络来识别手写数字。这将帮助我们了解如何使用TensorFlow来实现端到端解决方案。
第3章首先讨论如何用TensorFlow解决NLP任务。在该章中,我们将讨论如何用神经网络学习单词向量或单词表示。单词向量也称为词嵌入。单词向量是单词的数字表示,相似单词有相似值,不同单词有不同值。首先,将讨论实现这一目标的几种传统方法,包括使用称为WordNet的大型人工构建知识库。然后,将讨论基于现代神经网络的方法,称为Word2vec,它在没有任何人为干预的情况下学习单词向量。我们将通过一个实例来了解Word2vec的机制。接着,将讨论用于实现此目的的两种算法变体:skip-gram和连续词袋(CBOW)模型。我们将讨论算法的细节,以及如何在TensorFlow中实现它们。
第4章介绍与单词向量相关的更高级方法。首先,会比较skip-gram和CBOW,讨论其中哪一种有明显优势。接下来,将讨论可用于提高Word2vec算法性能的几项改进。然后,将讨论一种更新、更强大的词嵌入学习算法:GloVe(全局向量)算法。后,将在文档分类任务中实际观察单词向量。在该练习中,我们将看到单词向量十分强大,足以表示文档所属的主题(例如,娱乐和运动)。
第5章讨论卷积神经网络(CNN),它是擅长处理诸如图像或句子这样的空间数据的神经网络家族。首先,讨论如何处理数据以及处理数据时涉及哪种操作,以便对CNN有较深的理解。接下来,深入研究CNN计算中涉及的每个操作,以了解CNN背后的数学原理。后,介绍两个练习。练习使用CNN对手写数字图像进行分类,我们将看到CNN能够在此任务上很快达到较高的准确率。接下来,我们将探讨如何使用CNN对句子进行分类。特别地,我们要求CNN预测一个句子是否与对象、人物、位置等相关。
第6章介绍递归神经网络。递归神经网络(RNN)是一个可以模拟数据序列的强大的神经网络家族。首先讨论RNN背后的数学原理以及在学习期间随时间更新RNN的更新规则。然后,讨论RNN的不同变体及其应用(例如,一对一RNN和一对多RNN)。后,用RNN执行文本生成任务的练习。我们用童话故事训练RNN,然后要求RNN生成一个新故事。我们将看到在持久的长期记忆方面RNN表现不佳。后,讨论更高级的RNN变体,即RNN-CF,它能够保持更长时间的记忆。
第7章介绍长短期记忆网络。RNN在保持长期记忆方面效果较差,这使我们需要探索能在更长时间内记住信息的更强大技术。我们将在该章讨论一种这样的技术:长短期记忆网络(LSTM)。LSTM功能更强大,并且在许多时间序列任务中表现得优于其他序列模型。首先通过一个例子,研究潜在的数学原理和LSTM的更新规则,以说明每个计算的重要性。然后,将了解为什么LSTM能够更长时间地保持记忆。接下来,将讨论如何进一步提高LSTM预测能力。后,将讨论具有更复杂结构的几种LSTM变体(具有窥孔连接的LSTM),以及简化LSTM门控循环单元(GRU)的方法。
第8章介绍LSTM的应用:文本生成。该章广泛评估LSTM在文本生成任务中的表现。我们将定性和定量地衡量LSTM产生的文本的好坏程度,还将比较LSTM、窥孔连接LSTM和GRU。后,将介绍如何将词嵌入应用到模型中来改进LSTM生成的文本。
第9章转到对多模态数据(即图像和文本)的处理。在该章中,我们将研究如何自动生成给定图像的描述。这涉及将前馈模型(即CNN)与词嵌入层及顺序模型(即LSTM)组合,形成一个端到端的机器学习流程。
第10章介绍有关神经机器翻译(NMT)模型的应用。机器翻译指的是将句子或短语从源语言翻译成目标语言。首先讨论机器翻译是什么并简单介绍机器翻译历史。然后,将详细讨论现代神经机器翻译模型的体系结构,包括训练和预测的流程。接下来,将了解如何从头开始实现NMT系统。后,会探索改进标准NMT系统的方法。
第11章重点介绍NLP的现状和未来趋势。我们将讨论前面提到的系统的相关新发现。该章将涵盖大部分令人兴奋的创新,并让你直观地感受其中的一些技术。
附录向读者介绍各种数学数据结构(例如,矩阵)和操作(例如,矩阵的逆),还将讨论概率中的几个重要概念。然后将介绍Keras,它是在底层使用TensorFlow的高级库。Keras通过隐藏TensorFlow中的一些有难度的细节使得神经网络的实现更简单。具体而言,通过使用Keras实现CNN来介绍如何使用Keras。接下来,将讨论如何使用TensorFlow中的seq2seq库来实现一个神经机器翻译系统,所使用的代码比在第11章中使用的代码少得多。后,将向你介绍如何使用TensorBoard可视化词嵌入的指南。TensorBoard是TensorFlow附带的便捷可视化工具,可用于可视化和监视TensorFlow客户端中的各种变量。
译者序
前言
关于作者
关于审阅者
第1章 自然语言处理简介 1
1.1 什么是自然语言处理 1
1.2 自然语言处理的任务 2
1.3 传统的自然语言处理方法 3
1.3.1 理解传统方法 4
1.3.2 传统方法的缺点 7
1.4 自然语言处理的深度学习方法? 8
1.4.1 深度学习的历史 8
1.4.2 深度学习和NLP的当前状况 9
1.4.3 理解一个简单的深层模型—全连接神经网络 10
1.5 本章之外的学习路线 12
1.6 技术工具简介 14
1.6.1 工具说明 15
1.6.2 安装Python和scikit-learn 15
1.6.3 安装Jupyter Notebook 15
1.6.4 安装TensorFlow 16
1.7 总结 17
第2章 理解TensorFlow 18
2.1 TensorFlow是什么 18
2.1.1 TensorFlow入门 19
2.1.2 TensorFlow客户端详细介绍 21
2.1.3 TensorFlow架构:当你执行客户端时发生了什么 21
2.1.4 Cafe Le TensorFlow:使用类比理解TensorFlow 23
2.2 输入、变量、输出和操作 24
2.2.1 在TensorFlow中定义输入 25
2.2.2 在TensorFlow中定义变量 30
2.2.3 定义TensorFlow输出 31
2.2.4 定义TensorFlow操作 31
2.3 使用作用域重用变量 40
2.4 实现我们的第一个神经网络 42
2.4.1 准备数据 43
2.4.2 定义TensorFLow图 43
2.4.3 运行神经网络 45
2.5 总结 46
第3章 Word2vec——学习词嵌入 48
3.1 单词的表示或含义是什么 49
3.2 学习单词表示的经典方法 49
3.2.1 WordNet—使用外部词汇知识库来学习单词表示 50
3.2.2 独热编码表示方式 53
3.2.3 TF-IDF方法 53
3.2.4 共现矩阵 54
3.3 Word2vec—基于神经网络学习单词表示 55
3.3.1 练习:queen = king – he + she吗 56
3.3.2 为学习词嵌入定义损失函数 58
3.4 skip-gram算法 59
3.4.1 从原始文本到结构化的数据 59
3.4.2 使用神经网络学习词嵌入 60
3.4.3 使用TensorFlow实现skip-gram 67
3.5 连续词袋算法 69
3.6 总结 71
第4章 高级Word2vec 72
4.1 原始skip-gram算法 72
4.1.1 实现原始skip-gram算法 73
4.1.2 比较原始skip-gram算法和改进的skip-gram算法 75
4.2 比较skip-gram算法和CBOW算法 75
4.2.1 性能比较 77
4.2.2 哪个更胜一筹:skip-gram还是CBOW 79
4.3 词嵌入算法的扩展 81
4.3.1 使用unigram分布进行负采样 81
4.3.2 实现基于unigram的负采样 81
4.3.3 降采样:从概率上忽视常用词 83
4.3.4 实现降采样 84
4.3.5 比较CBOW及其扩展算法 84
4.4 最近的skip-gram和CBOW的扩展算法 85
4.4.1 skip-gram算法的限制 85
4.4.2 结构化skip-gram算法 85
4.4.3 损失函数 86
4.4.4 连续窗口模型 87
4.5 GloVe:全局向量表示 88
4.5.1 理解GloVe 88
4.5.2 实现GloVe 89
4.6 使用Word2vec进行文档分类 90
4.6.1 数据集 91
4.6.2 用词向量进行文档分类 91
4.6.3 实现:学习词嵌入 92
4.6.4 实现:词嵌入到文档嵌入 92
4.6.5 文本聚类以及用t-SNE可视化文档嵌入 93
4.6.6 查看一些特异点 94
4.6.7 实现:用K-means对文档进行分类/聚类 95
4.7 总结 96
第5章 用卷积神经网络进行句子分类 97
5.1 介绍卷积神经网络 97
5.1.1 CNN基础 97
5.1.2 卷积神经网络的力量 100
5.2 理解卷积神经网络 100
5.2.1 卷积操作 100
5.2.2 池化操作 103
5.2.3 全连接层 104
5.2.4 组合成完整的CNN 105
5.3 练习:在MNIST数据集上用CNN进行图片分类 105
5.3.1 关于数据 106
5.3.2 实现CNN 106
5.3.3 分析CNN产生的预测结果 108
5.4 用CNN进行句子分类 109
5.4.1 CNN结构 110
5.4.2 随时间池化 112
5.4.3 实现:用CNN进行句子分类 112
5.5 总结 115