深度学习为世界上的智能系统(比如Google Voice、Siri和Alexa)提供了动力。随着硬件(如GPU)和软件框架(如PyTorch、Keras、TensorFlow和CNTK)的进步以及大数据的可用性,人们在文本、视觉和分析等领域更容易实施相应问题的解决方案。
本书对当今前沿的深度学习库PyTorch进行了讲解。凭借其易学习性、高效性以及与Python开发的天然亲近性,PyTorch获得了深度学习研究人员以及数据科学家们的关注。本书从PyTorch的安装讲起,然后介绍了为现代深度学习提供驱动力的多个基础模块,还介绍了使用CNN、RNN、LSTM以及其他网络模型解决问题的方法。本书对多个先进的深度学习架构的概念(比如ResNet、DenseNet、Inception和Seq2Seq)进行了阐述,但没有深挖其背后的数学细节。与GPU计算相关的知识、使用PyTorch训练模型的方法,以及用来生成文本和图像的复杂神经网络(如生成网络),也在本书中有所涵盖。
学完本书后,读者可以使用PyTorch轻松开发深度学习应用程序。
本书内容:
在GPU加速的张量计算中使用PyTorch;
为图像自行创建数据集和数据装载器,然后使用torchvision和torchtext测试模型;
使用PyTorch来实现CNN架构,从而构建图像分类器;
使用RNN、LSTM和GRU开发能进行文本分类和语言建模的系统;
学习的CCN架构(比如ResNet、Inception、DenseNet等),并将其应用在迁移学习中;
学习如何混合多个模型,从而生成一个强大的集成模型;
使用GAN生成新图像,并使用风格迁移生成艺术图像。
展开