搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
集体智慧编程
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787121254437
  • 作      者:
    (美)Toby Segaran著
  • 出 版 社 :
    电子工业出版社
  • 出版日期:
    2015
收藏
编辑推荐

  《集体智慧编程》内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过滤)、用决策树技术实现预测和决策建模功能、社交网络的信息匹配技术、机器学习和人工智能应用等。《集体智慧编程》是Web开发者、架构师、应用工程师等的不二之选。


展开
作者简介

  莫映,现供职于IBM中国开发实验室,在软件开发与设计领域里混迹已然10年有余,目前从事商业领域社交软件产品的研发工作。一直关注社交网络以及社交技术在不同领域里的运用,同时也积极活跃于公司内外的各种技术社区之中。

展开
内容介绍

  《集体智慧编程》以机器学习与计算统计为主题背景,专门讲述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论,通过复杂的算法来从Web网站获取、收集并分析用户的数据和反馈信息,以便创造新的用户价值和商业价值。《集体智慧编程》内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过滤)、用决策树技术实现预测和决策建模功能、社交网络的信息匹配技术、机器学习和人工智能应用等。
  《集体智慧编程》是Web开发者、架构师、应用工程师等的优佳选择。

展开
精彩书评

  ★“太棒了!对于初学这些算法的开发者而言,我想不出有比这本书更好的选择了,而对于像我这样学过Al的老朽而言,我也想不出还有什么更好的办法能够让自己重温这些知识的细节。”
  ——Dan Russell,资深技术经理,Google

  ★“Toby的这本书非常成功地将机器学习算法这一复杂的议题拆分成了一个个既实用又易懂的例子,我们可以直接利用这些例子来分析当前网络上的社会化交互作用。假如我早两年读过这本书,就会省去许多宝贵的时间,也不至于走那么多的弯路了。”
  ——Tim Wolters,CTO,Collective Intellect

展开
目录

Table of Contents
前言 viii
第1章  集体智慧导言 1
什么是集体智慧 2
什么是机器学习 3
机器学习的局限 4
真实生活中的例子 5
学习型算法的其他用途 5
第2章  提供推荐 7
协作型过滤 7
搜集偏好 8
寻找相近的用户 9
推荐物品 15
匹配商品 17
构建一个基于del.icio.us的链接推荐系统 19
基于物品的过滤 22
使用MovieLens数据集 25
基于用户进行过滤还是基于物品进行过滤 27
练习 28
第3章  发现群组 29
监督学习和无监督学习 29
单词向量 30
分级聚类 33
绘制树状图 38
列聚类 40
K-均值聚类 42
针对偏好的聚类 44
以二维形式展现数据 49
有关聚类的其他事宜 53
练习 53
第4章  搜索与排名 54
搜索引擎的组成 54
一个简单的爬虫程序 56
建立索引 58
查询 63
基于内容的排名 64
利用外部回指链接 69
从点击行为中学习 74
练习 84
第5章  优化 86
组团旅游 87
描述题解 88
成本函数 89
随机搜索 91
爬山法 92
模拟退火算法 95
遗传算法 97
真实的航班搜索 101
涉及偏好的优化 106
网络可视化 110
其他可能的应用场合 115
练习 116
第6章  文档过滤 117
过滤垃圾信息 117
文档和单词 118
对分类器进行训练 119
计算概率 121
朴素分类器 123
费舍尔方法 127
将经过训练的分类器持久化 132
过滤博客订阅源 134
对特征检测的改进 136
使用Akismet 138
替代方法 139
练习 140
第7章  决策树建模 142
预测注册用户 142
引入决策树 144
对树进行训练 145
选择最合适的拆分方案 147
以递归方式构造树 149
决策树的显示 151
对新的观测数据进行分类 153
决策树的剪枝 154
处理缺失数据 156
处理数值型结果 158
对住房价格进行建模 158
对“热度”评价进行建模 161
什么时候使用决策树 164
练习 165
第8章  构建价格模型 167
构造一个样本数据集 167
k-最近邻算法 169
为近邻分配权重 172
交叉验证 176
不同类型的变量 178
对缩放结果进行优化 181
不对称分布 183
使用真实数据——eBay API 189
何时使用k-最近邻算法 195
练习 196
第9章  高阶分类:核方法与SVM 197
婚介数据集 197
数据中的难点 199
基本的线性分类 202
分类特征 205
对数据进行缩放处理 209
理解核方法 211
支持向量机 215
使用LIBSVM 217
基于Facebook的匹配 219
练习 225
第10章  寻找独立特征 226
搜集一组新闻 227
先前的方法 231
非负矩阵因式分解 232
结果呈现 240
利用股票市场的数据 243
练习 248
第11章  智能进化 250
什么是遗传编程 250
将程序以树形方式表示 253
构造初始种群 257
测试题解 259
对程序进行变异 260
交叉 263
构筑环境 265
一个简单的游戏 268
更多可能性 273
练习 276
第12章  算法总结 277
贝叶斯分类器 277
决策树分类器 281
神经网络 285
支持向量机 289
k-最近邻 293
聚类 296
多维缩放 300
非负矩阵因式分解 302
优化 304
附录A:第三方函数库 309
附录B:数学公式 316
索引 323

展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证