大多数数据挖掘的教材都专注于介绍理论基础,因而往往难以理解和学习。
本书是介绍写给程序员的一本数据挖掘指南,可以帮助读者动手实践进行数据挖掘、集体智慧并构建推荐系统。
本书作者采用在实践中学的方式,提供了Python的代码和案例,详细介绍如何应用数据挖掘技术,开发出实用的推荐系统。
本书英文版在网络上放出样章,得到很多业内知名人士的推荐和好评。
知名技术译者王斌老师译作,翻译质量上乘
数据挖掘一般是指通过算法搜索隐藏于大量的数据之中的信息的过程。众多的数据挖掘教材都专注于介绍理论基础,因而往往难以理解和学习。
本书是专门写给程序员的一本数据挖掘指南,可以帮助读者动手实践,进行数据挖掘、应用集体智慧并构建推荐系统。
全书共8 章,介绍了数据挖掘的基本知识和理论、协同过滤、内容过滤及分类、算法评估、朴素贝叶斯、非结构化文本分类以及聚类等内容;用生动的图示、大量的表格、简明的公式以及实用的Python 代码示例,阐释数据挖掘的知识和技能。
每章还给出了习题和练习,帮助读者巩固所学的知识。
本书采用"在实践中学习"的思路来组织内容。建议读者不是被动地阅读本书,而是通过课后习题和本书提供的Python 代码进行实践。此外,读者还应当积极参与到数据挖掘技术的编程实践中。
本书适合对数据挖掘、数据分析和推荐系统感兴趣的程序员及相关领域的从业者阅读参考;同时,本书也可以作为
一本轻松有趣的数据挖掘课程教学参考书。本书由一系列互为基础的小的知识点累积而成,学完本书以后,能够为理解
数据挖掘的各种技术打下坚实的基础。
读者可通过http://guidetodatamining.com/ 或http://www.epubit.com.cn 获取本书相关资源。
展开