资深大数据专家多年实战经验总结,拒绝晦涩,开启大数据与机器学习妙趣之旅
以降低学习曲线和阅读难度为宗旨,重点讲解了统计学、数据挖掘算法、实际应用案例、数据价值与变现,以及高级拓展技能,清晰勾勒出大数据技术路线与产业蓝图
目前很多大中型企业都有数据分析岗位,尤其是和自己业务结合紧密的分析岗位。企业求贤若渴,而求职者对数据分析岗位望而却步。这就是当前大数据分析市场的尴尬。
原因有三:
●数学基础薄弱:很多应用中的统计学、概率学,成为学习中的巨大阻力。
●学习成本高:数学和相关的算法过于抽象,布道者往往忽略了很多解释性的内容,使得读者学习起来费时费力。
●变现不确定:这也是数据分析人员的尴尬。个人对数据的加工增值以及变现有多大的贡献难以度量。
本书通俗易懂,有高中数学基础即可看懂,同时结合大量案例与漫画,将高度抽象的数学、算法与应用,与现实生活中的案例和事件一一做了关联,将源自生活的抽象还原出来,帮助读者理解后,又带领大家将这些抽象的规律与算法应用于实践,贴合读者需求。同时,本书不是割裂讲解大数据与机器学习的算法和应用,还讲解了其生态环境与关联内容,让读者更全面地知晓渊源与未来,是系统学习大数据与机器学习的不二之选:
●大数据产业解读——剖析产业情况,人才供需、职业选择与相应“武器”库;
●步入大数据之门——解读数据、信息、算法,以及与大数据应用的关系;
●大数据基石——结合大量示例和漫画,趣味讲解大数据算法应掌握的数学知识,无障碍学习;
●大数据算法奥义——信息论、向量空间、回归、聚类、分类等*为核心的算法的释义与应用,举重若轻;
●大数据热门应用——关联分析、用户画像、推荐算法、文本挖掘、人工神经网络等*实用、*需要了解的应用的原理与实现;
●大数据主流框架——介绍了主流的大数据框架(Hadoop、Spark和Cassandra);
●系统架构与调优——从速度与稳定性方面给出调优的一般性“内功心法”;
●大数据价值与变现——从运营指标、AB测试、大数据价值与变现场景多维度解读。
资深大数据专家多年实战经验总结,拒绝晦涩,开启大数据与机器学习妙趣之旅。以降低学习曲线和阅读难度为宗旨,系统讲解统计学、数据挖掘算法、实际应用案例、数据价值与变现,以及高级拓展技能,并清晰勾勒出大数据技术路线与产业蓝图。
本书共分18章。用通俗易懂的语言,结合大量案例与漫画,不枯燥,实用、接地气。
第1~5章,这部分是大数据入门所需的系统性知识,剖析大数据产业、数据与信息算法等的关系,妙解数学基础(排列组合、概率、统计与分布),以及指标化运营及体系构建。这部分补足读者的产业与相关概念认知,以及所需的数学知识。为下面的数据挖掘算法的理解与应用夯实基础。
第6~8章,这部分介绍数据挖掘基础知识与算法,讲解了与数据息息相关的信息论,重点讲解了:多维向量空间(向量和维度、矩阵及其计算、上卷和下钻);
回归(线性回归、残差分析、拟合相关问题);
聚类(K-Means算法、有趣模式、孤立点、层次与密度聚类,聚类的评估等);
分类(朴素贝叶斯、决策树归纳、随机森林、隐马尔科夫模型、SVM、遗传算法)。
第11~18章,这部分介绍生产应用与高级扩展。其中第11~15章介绍生产应用实践,涵盖关联分析、用户画像、推荐算法、文本挖掘、人工神经网络。这些也是工业界和学术界研究的热点。第16章讲解了著名的大数据框架及其安装与配置,如Hadoop、Spark、Cassandra、PrestoDB。第17章从速度与稳定性维度介绍了大数据系统的架构与调优。第18章则从数据运营、评估、展现与变现场景层面进行了解读。
附录部分给出了大数据平台运行可能需要的软件和库,以及群众如何看待炙手可热的大数据。