序
前言
2011年讲座
1 F0uriel.分析及其在偏微分方程中的应用
1.1 经典的P0uricr方法
1.2 拟微分算子和P0llricr积分算子
1.3 B0nV的仿微分分解及其应用
1.4 FBI变换和Wigner变换
参考文献
2 几何中几个定理的欣赏
2.1 勾股定理,E、lclid几何
2.2 高斯定理,黎曼几何
2.3 单值化定理,几何分析
2.4 Pincz3.r6猜想,Ricci流
3 数论印象
3.1 引言
3.2 素数
3.3 方法
3.4 进展
3.5 附记
4 RicCi流奇点和Ricci孤立子几何
4.1 Ricci流
4.2 特殊解:Einstcin度量和Ricci孤立子
4.3 Ricci流的奇点类型
4.4 三维Ricci流的奇点结构
4.5 高维Ricci孤立于的进展
4.6 最近的进展
参考文献
5 物理激发的数学
6 数学的直觉与感悟
6.l 关于初等数学的两个例子
6.2 Brouwer不动点定理
6.3 指数函数与孤立子
参考文献
7 李代数及其应用
7.1 什么是好数学
7.2什么是李代数
7.3 偏微分方程的对称变换
7.4 调和多项式基本定理及推广
7.5 例外李(群)代数的应用
8 算法及复杂性
8.1 NN=P
8.2 RP+P
8.3 子集和问题及应用
8.4 编码中的复杂性问题
8.5 格中的复杂性问题
2012年讲座
1 Ricci流及其应用
1.1 Ricci流方程
1.2 奇点结构
1.3 几何应用
参考文献
2 哈密顿系统的运动复杂性
2.1 从牛顿到庞加莱
2.2 KAM理论
2.3 Arn。ld扩散与拟遍历猜测
2.4 从不动点到Mather集
2.5 Mather理论与弱KAM理论
参考文献
3 极小曲面纵横谈
3.1 极小曲面的发现和发展
……
4 数论中的一些问题和进展
5 共形场论中的模不变性
6 非传统方法在组合数论中的应用
7 复分析中的几个话题
8 多复变:简介与进展
展开