搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
时空序列数据分析和建模
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787030333414
  • 作      者:
    王佳璆[等]著
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2012
收藏
内容介绍
  随着对地观测技术、计算机技术和网络通信技术的迅速发展,已积累了海量的时空序列数据(如气象数据、交通流数据,环境监测等)。如何有效地分析和建模时空序列数据,构建时空一体化的时空预测模型,对于研究地理时空现象具有十分重要的意义,并已逐渐成为时空数据分析的重要领域之一。《时空序列数据分析和建模》借鉴时空统计、神经网络、支持向量回归等方法应用于时间序列分析和空间数据分析中的思想,从寻找易用的、准确的、可靠的、实用性强的时空序列建模方法的角度出发,在对时空自相关移动平均模型进行了深入系统研究的基础上,构建了多种新的时空模型,并对模型的性能进行了全面的分析和评估,进而将时空序列模型应用于气象、交通、环境监测等部门,并提供决策支持。
展开
目录
《地球观测与导航技术丛书》出版说明
前言
第1章 绪论
1.1 时空序列分析建模的发展背景
1.2 时空序列分析建模的研究概况
1.3 时空序列分析建模的应用
1.4 本书的主要研究内容及结构安排
1.5 本章小结
参考文献

第2章 时空数据的表达及基本性质
2.1 地理时空的理解
2.2 时空数据的表达
2.3 时空数据的基本性质
2.4 本章小结
参考文献

第3章 时空自相关移动平均模型
3.1 自相关模型
3.2 移动平均模型
3.3 时间自相关移动平均模型
3.4 空间/时空自相关移动平均模型
3.5 实例1——空间面状数据的时空预测
3.6 实例2一交通路网数据的时空预测
3.7 本章小结
参考文献

第4章 时空序列混合框架和模型
4.1 非平稳时空过程模型方法
4.2 非平稳时空序列混合建模框架
4.3 实例——空间点数据的时空预测
4.4 本章小结
参考文献

第5章 时空序列神经网络模型
5.1 神经网络模型
5.2 时空神经元网络模型
5.3 网络的结构及工作方式
5.4 网络的学习方法和算法
5.5 时空非平稳建模
5.6 实例1——空间面状数据的时空预测
5.7 实例2——空间点数据的时空预测
5.8 本章小结
参考文献

第6章 时空序列支持向量相关模型
6.1 机器学习概论
6.2 统计学习理论
6.3 支持向量机的发展及应用
6.4 多输出支持向量相关算法
6.5 构造时空核函数
6.6 实例1——空间面状数据的时空预测
6.7 实例2——空间点数据的时空预测
6.8 本章小结
参考文献

第7章 总结与展望
7.1 模型比较及讨论
7.2 主要研究结论
7.3 研究展望
附录 194个国际气象交换站描述性统计表
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证