(1)无功补偿分布不合理 长期以来的一些做法是使用传统的调相调压法规划电网无功补偿容量,长期执行“功率因数调整电费办法”,采用各种不同电压等级的变电所无功补偿装置设计技术规定,这造成了当前电网无功补偿布局不合理的现状:配电网侧电容器补偿容量较少,没有做到无功补偿就地平衡,无功只是从高压侧向低压侧流动,从电源侧向负荷侧流动,造成电网损耗大,电压降落大。(2)电压控制结构不合理 自动电压控制系统由安装在变电站的VQC无功电压自控装置到地区电网无功电压集中控制系统,再到现在的无功电压分布式控制系统,保证了电网电压质量、安全稳定运行、降低网损及降低运行人员工作强度。但是,自动电压控制系统目前仅在输电侧发挥功效,配电侧无功电压自动控制研究还相对较少,不足以满足人们对电网高效、经济、优化运行的追求,不能满足智能配电网的技术要求。(3)电压控制区域不合理 AVC的变压器分接头动作、电容(抗)器的无功调节无法做到均匀调节,相邻两级电网之间的无功电压控制不和谐。因此无法建立全网统一的电压标准,只能以本地测量电压为依据,分散测量误差使得优化结果受到了一定影响。(4)优化目标协调不合理 降损与电压质量目标不统一,无功调控顾此失彼。电网从发电到用电是一个有机的整体,只有做到各个环节相互协调、信息互动,才能从现代电网向智能电网进行转变。随着电网的发展,如何保证各种分布式电源的安全,可靠的接入电网,在传统电压控制中没有体现。(5)无功优化结果不理想 传统AVC系统一方面存在网损和电压控制顾此失彼的情况;另一方面只实现了静态无功优化,还没有做到真正意义上的动态无功优化。此外,模型未计及谐波电压,而随着非线性元件的广泛使用,谐波的危害愈加剧烈,而且当电网出现较大故障时,尚不具备自愈的能力。(6)缺乏动态无功补偿装置 要想做到无功功率的就地平衡,必须要具有平滑的连续调节的无功补偿装置,否则无功功率的就地平衡将无从谈起。目前,不管配电网还是输电网,由于动态无功补偿装置的价格远比并联电容器和电抗器的价格高,普遍使用的还是并联电容器和并联电抗器。而这两种无功补偿装置都只能按组投切,而且并联电容器发出的无功功率随着并联的端电压下降,发出的无功功率也将减小,会导致电压的进一步下降,不利于电压的稳定性。
展开