《数据挖掘理论与实例》是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。《数据挖掘理论与实例》的主要目标是,通过不同领域的应用案例来说明数据挖掘在实际应用中的具体操作方法。将数据库管理系统MySQL和统计软件R结合,利用数据挖掘技术帮助陷入海量数据中的组织和个人提取有用的信息。《数据挖掘理论与实例》的主要内容包括理论和实例两部分:第一、第二章介绍数据挖掘、数据仓库和数据挖掘的常用技术等基本理论;实例部分是以作者的两个研究课题为基础,第三、第四章介绍呼叫中心数据仓库的构建和数据挖掘模型与实现(MSSQLServer2000、决策树);第五、第六章介绍数据挖掘在QFII投资理念与持股偏好研究中的应用(Rsoft-ware、MySQL、多元逐步线性回归、因子分析、聚类分析等)。
展开