第一篇 神经网络理论及其MATLAB实现<br> 第1章 神经网络理论<br> 人脑是一部不寻常的智能机,它能以惊人的高速度解释感觉器官传来的含糊不清的信息。它能觉察到喧闹房间内的窃窃私语,能够识别出光线暗淡的胡同中的一张面孾,更能通过不断的学习而产生伟大的创造力。古今中外,许许多多科学家为了揭开大脑机能的奥秘,从不同的角度进行着长期不懈的努力和探索,由此逐渐形成了一个多学科交叉的前沿技术领域——神经网络(Neural Network)。<br> 人工神经系统的研究可以追溯到1800年Frued的精神分析学时期,那时他已经做了一些初步工作。1913年出现了人工神经系统的第一个实践,即由Russell描述的水力装置。1943年美国心理学家warren S McCulloch与数学家Walter H Pitts合作,用逻辑的数学工具研究客观事件在形式神经网络中的描述,从此开创了对神经网络的理论研究。他们在分析、总结神经元基本特性的基础上,首先提出神经元的数学模型,简称MP模型。从脑科学研究来看,MP模型不愧为第一个用数理语言描述脑的信息处理过程的模型。后来MP模型经过数学家的精心整理和抽象,最终发展成一种有限自动机理论,再一次展现了MP模型的价值。此模型沿用至今,直接影响着这一领域的研究进展。1949年心理学家D.O.Hebb提出关于神经网络学习机理的“突触修正假设”,即突触联系效率可变的假设,现在多数学习机仍遵循这一学习规则。1957年.Frank Rosenblatt首次提出并设计制作了著名的感知机(Perceptron),第一次从理论研究转入过程实现阶段,掀起了研究人工神经网络的高潮。今天,随着科学技术的迅猛发展,神经网络正以极大的魅力吸引着世界上众多专家、学者为之奋斗,在世界范围内再次掀起了神经网络的研究热潮。难怪有关国际权威人士评论指出,目前对神经网络的研究,其重要意义不亚于第二次世界大战时对原子弹的研究。<br> 人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其他传统方法相结合,将推动人工智能和信息处理技术的不断发展。近年来,人工神经网络正向着模拟人类认知的道路上更加深入地发展,且与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。<br> ……
展开