搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
波形松弛方法
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787030235237
  • 作      者:
    蒋耀林著
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2009
收藏
内容介绍
    《波形松弛方法》主要讨论用于求解微分方程并具有广泛应用背景的波形松弛方法理论及应用。除绪论外,全书共11章,基本内容包括初值问题与周期问题的连续及离散波形松弛方法的收敛性、波形松弛算子的谱理论、波形松弛方法的加速算法,以及其他一些常用方法。全书论证详尽,系统性强,各章内容自成体系,又相互联系。为便于读者理解和阅读,在内容安排上,由浅人深,循序渐进,详略得当。<br>    《波形松弛方法》可供计算数学、应用数学、电路与系统以及计算机相关专业研究生阅读,同时也可作为理工类相关专业教师以及从事科学和工程计算的科研工作者的参考书。
展开
目录
绪论<br>0.1  波形松弛方法的基本思想<br>0.2  波形松弛方法的简单分类<br><br>第1章 常微分方程的波形松弛方法<br>1.1  泛函分析预备知识<br>1.1.1  Banach空间<br>1.1.2  线性算子谱与谱半径<br>1.1.3  压缩映射原理<br>1.2  线性微分方程的波形松弛方法<br>1.2.1  迭代格式<br>1.2.2  连续时间情形<br>1.2.3  离散时间情形<br>1.3  非线性微分方程的波形松弛方法<br>1.3.1  一阶微分方程情形<br>1.3.2  二阶微分方程情形<br>1.4  波形松弛算子谱与伪谱<br><br>第2章 线性微分代数方程的波形松弛方法<br>2.1  微分代数方程简介<br>2.2  波形松弛方法<br>2.2.1  连续波形松弛方法<br>2.2.2  离散波形松弛方法<br>2.2.3  波形Krylov子空间方法<br>2.3  波形松弛算子谱与伪谱<br>2.3.1  波形松弛算子谱<br>2.3.2  波形松弛算子伪谱<br><br>第3章 非线性微分代数方程的波形松弛方法<br>3.1  典型微分代数方程的波形松弛方法<br>3.1.1  半显式微分代数方程<br>3.1.2  简单隐式微分代数方程<br>3.2  一般微分代数方程的波形松弛方法<br>3.2.1  完全隐式微分代数方程<br>3.2.2  高指标微分代数方程<br>3.3  单调波形松弛方法<br>3.3.1  初始值与输入函数的单调依赖性<br>3.3.2  收敛性分析<br>3.3.3  初始迭代选取<br><br>第4章  积分微分代数方程的波形松弛方法<br>4.1  线性积分微分代数方程的波形松弛方法<br>4.1.1  连续波形松弛方法<br>4.1.2  离散波形松弛方法<br>4.1.3  多重分裂波形松弛方法<br>4.1.4  波形Krylov子空间方法<br>4.1.5  矩阵分裂方法<br>4.2  非线性积分微分代数方程的波形松弛方法<br>4.2.1  连续波形松弛方法<br>4.2.2  离散波形松弛方法<br><br>第5章 时滞微分方程的波形松弛方法<br>5.1  显式时滞常微分方程的波形松弛方法<br>5.1.1  简单时滞微分方程<br>5.1.2  典型时滞微分方程<br>5.1.3  广义时滞常微分方程<br>5.2  隐式时滞常微分方程的波形松弛方法<br>5.3  时间域无损传输线方程的波形松弛方法<br>5.3.1  无损传输线方程模型<br>5.3.2  波形松弛方法<br><br>第6章  偏微分方程的波形松弛方法<br>6.1  多重网格波形松弛方法<br>6.1.1  多重网格方法<br>6.1.2  连续时间情形<br>6.1.3  离散时间情形<br>6.2  区域分解波形松弛方法<br>6.2.1  区域分解方法介绍<br>6.2.2  传统Schwarz波形松弛方法<br>6.2.3  优化Schwarz波形松弛方法<br>第7章  常微分方程的周期波形松驰方法<br>第8章  微分代数方程的周期波形松驰方法<br>第9章  偏微分方程的周期波形松驰方法<br>第10章  波形松驰的加速方法<br>第11章  波形松驰方法的一些应用<br>参考文献
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证