搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
基于Excel的地理数据分析
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787030271822
  • 作      者:
    陈彦光编著
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2010
收藏
内容介绍
  《基于Excel的地理数据分析》面向地理问题,基于Excel软件,叙述大量数学方法的应用思路和过程。内容涉及回归分析、主成分分析、聚类分析、判别分析、时(空)问序列分析、Markov链、R/S分析、线性规划、层次分析、灰色系统(3M(1,N)建模和预测方法等。通过模仿《基于Excel的地理数据分析》介绍的计算过程,读者可以加深对有关数学方法的认识和理解,并且掌握很多Excel的应用技巧。
  这本书虽然是以地理数据为分析对象展开论述,但所涉及的内容绝大多数为通用方法。只要改变数据的来源,书中论述的计算流程完全可以应用到其他领域。
  《基于Excel的地理数据分析》的初稿和修改稿先后在北京大学城市与环境专业研究生中试用八年,可供地理学、生态学、环境科学、地质学、经济学、城市规划学乃至医学、生物学等领域的学生、研究人员和工程技术人员阅读和参考。
展开
精彩书摘
  回归分析是最为基本的定量分析工具,很多表面看来与回归分析无关并且似乎难以理解的数学方法,可以借助回归分析得到简明的解释。通过回归分析,可以更好地理解因子分析、判别分析、自回归分析、功率谱分析、小波分析、神经网络分析等。在本书中,笔者将会建立回归分析与因子分析、判别分析、时间序列分析、灰色系统的GM(1,N)预测分析等数学联系。在各种回归分析方法中,一元线性回归最为基本。熟练掌握这一套分析方法对学习其他数学工具非常有用。下面借助简单的实例详细解析基于Excel的一元线性回归分析。
  【例】某地区最大积雪深度和灌溉面积的关系。为了估计山上积雪融化后对山下灌溉的影响,在山上建立观测站,测得连续10年的最大积雪深度和灌溉面积数据。利用这些观测数据建立线性回归模型,就可以借助提前得到的积雪深度数据,预测当年的灌溉面积大小。原始数据来源于苏宏宇等编著的《Mathcad 2000数据处理应用与实例》。
展开
目录
前言
第1章  一元线性回归分析
1.1  模型的初步估计
1.2  详细的回归过程
1.3  回归结果详解
1.4  预测分析
第2章  多元线性回归分析
2.1  多元回归过程
2.2  多重共线性分析
2.3  借助线性回归函数快速拟合
2.4  统计检验临界值的查询
第3章  逐步回归分析
3.1  数据预备工作
3.2  变量引入的计算过程
3.3  参数估计和模型建设
3.4  模型参数的进一步验证
3.5  模型检验
第4章  非线性回归分析
4.1  常见数学模型
4.2  常见实例——一变量的情形
4.3  常见实例——一变量化为多变量的情形
4.4  常见实例——多变量的情形
第5章  主成分分析
5.1  计算步骤
5.2  相关的验证工作
5.3  主成分分析与因子分析的关系
第6章  系统聚类分析
6.1  计算距离矩阵
6.2  聚类过程
6.3  聚类结果评价
第7章  距离判别分析
7.1  数据的预处理
7.2  计算过程
7.3  判别函数检验
7.4  样品的判别与归类
7.5  利用回归分析建立判别函数
7.6  判别分析与因子分析的关系
第8章  自相关分析
8.1  自相关系数
8.2  偏自相关系数
8.3  偏自相关系数与自回归系数
8.4  自相关分析
第9章  自回归分析
9.1  样本数据的初步分析
9.2  自回归模型的回归估计
9.3  数据的平稳化及其自回归模型
第10章  周期图分析
10.1  时间序列的周期图
10.2  周期图分析的相关例证
10.3  多元回归的验证
第11章  时空序列的谱分析(自谱)
11.1  周期数据的频谱分析
11.2  空间数据的波谱分析
第12章  功率谱分析(实例)
12.1  实例分析1
12.2  实例分析2
12.3  实例分析3
12.4  实例分析4
12.5  实例分析5
12.6  实例分析6
第13章  Markov链分析
13.1  问题与模型
13.2  逐步计算
13.3  编程计算
第14章  R/S分析
14.1  计算Hurst指数的基本步骤
14.2  自相关系数和R/S分析
第15章  线性规划求解(实例)
15.1  实例分析1
15.2  实例分析2
15.3  实例分析3
15.4  实例分析4
15.5  实例分析5
15.6  实例分析6
15.7  实例分析7
第16章  层次分析法
16.1  问题与模型
16.2  计算方法之一——方根法
16.3  计算方法之二——和积法
16.4  计算方法之三——迭代法
16.5  结果解释
第17章  GM(1,1)预测分析
17.1  方法之一——最小二乘运算
17.2  方法之二——线性回归法
第18章  GM(1,N)预测分析
18.1  方法之一——最小二乘运算
18.2  方法之二——线性回归法
参考文献
后记
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证