搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
文献来源:
出版时间 :
拓扑、测度与积分
0.00    
图书来源: 浙江图书馆(由图书馆配书)
  • 配送范围:
    全国(除港澳台地区)
  • ISBN:
    9787564130008
  • 作      者:
    江其保编著
  • 出 版 社 :
    东南大学出版社
  • 出版日期:
    2011
收藏
内容介绍
    《拓扑、测度与积分》属于现代数学基础的入门教材,主要讲授一般测度空间上的积分理论,另有四分之一篇幅介绍集合论预备知识和最基本的点集拓扑学。从目录可以看出,《拓扑、测度与积分》对于测度和积分的基础理论的介绍相当全面。必须指出,测度论是一个庞大的领域,本书不可能涉及像解析集那样比较专门的内容。本书的第一章系统地介绍了所谓的朴素集合论,其中包括选择公理和基数、序数的一般理论。第二章是点集拓扑学的一个引论。编者们力求简单、实用,只引入了分析中最常用的拓扑概念,但系统地介绍了应用中构造拓扑的方法。
展开
目录
第一章  预备知识
1.1 什么是现代数学
1.2 数学语言
1.3 集合及其运算
1.4 序关系
1.5 选择公理及其等价命题
1.6 基数
1.7 序数

第二章  拓扑
2.1 引言
2.2 拓扑及其例子
2.3 聚点、内点、边界点
2.4 映射的连续性
2.5 初始拓扑与最终拓扑
2.6 分离性公理和可数性公理
2.7 紧致性
2.8 距离空间中的紧致性
2.9 紧开拓扑
2.10 网收敛与滤子收敛

第三章  测度
3.1 引言
3.2 集代数:环与σ环
3.2.1 定义
3.2.2 Borelσ代数
3.2.3 算子Rσ(·)的性质
3.3 集函数
3.4 测度空间及其构造方法
3.5 测度扩张
3.5.1 Caratheodory测度扩张定理
3.5.2 σ有限测度的扩张
3.6 局部紧空间上的测度
3.6.1 局部紧空间
3.6.2 测度构造
3.7 测度的例子
3.7.1 Lebesgue测度
3.7.2 Lebesgue—Stieltjes测度
3.7.3 局部紧群上的Haar测度
3.7.4 Hausdorff测度
3.7.5 Brown运动

第四章  积分
4.1 可测函数
4.1.1 定义及基本性质
4.1.2 可测函数列的收敛性
4.2 测度空间上的积分
4.2.1 积分的构造
4.2.2 积分的性质
4.2.3 应用:Riesz表示定理
4.3 LP空间中的强收敛
4.3.1 不等式
4.3.2 强收敛与其他收敛性之间的关系
4.3.3 LP的稠密子空间与算子内插
4.3.4 附录:LP空间的基本性质
4.4 Fubini定理及其推广
4.4.1 乘积测度的构造与Fubini定理
4.4.2 推广
4.5 应用
4.5.1 积分算子
4.5.2 Haar积分与卷积运算
4.5.3 调和分析

第五章  广义测度的分解
5.1 引言
5.2 离散一连续分解
5.3 Hahn分解和Jordan分解
5.4 局部紧空间上的广义测度
5.5 Lebesgue分解和Radon—Nikodym定理
5.6 Lebesgue微分定理

附录:提示与解答
习题部分
问题部分
索  引
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

请选择您读者所在的图书馆

选择图书馆
浙江图书馆
点击获取验证码
登录
没有读者证?在线办证