在古代数学的所有课题之中,最清楚不过属于数论的或许应该是关于正整数的基本乘法性质的那个;它们在欧几里得的“书”Ⅶ,Ⅷ和Ⅸ中得到了尽善尽美的处理,一般都认为,这些书的内容即便不是全部,也是大量源自更早的年代,但几乎无人能说出它们背后的故事,关于可除性的一些事实在美索不达米亚12。必定就已经知道了;在60进制中的任一块倒数表都清晰指出了那些只含有素数2,3和5的整数和所有其他整数的区别,埃及数学中分式加法的严格处理最终以整数比的乘法处理形式补充到了希腊的数学中,这表明了一种基本态度的转变,按照保尔·塔纳里13。(Paul Tannery)的非常貌似真实的假说,有充分的理由表明它的根源在音乐理论之中,转过来说,这可能与最简单的平方根诸如、√2、√5信的无理性的早期证明有一些关系,但我们并不知道那些证明是什么;亚里士多德在一次讨论有关证明的逻辑结构(Analytica priora I,23)的过程中如果真的暗示了对√2的证明,那么我们就没有理由把它归功于假设性的“毕达哥拉斯学派”了,素数,连同因子,以及对给定的一些整数的公倍数的概念,可能相当早就有之;我们所能讲的全部是,柏拉图(Plato)在他后期的著作《法律(The Laws)》(737e~738a)中提到数5040的一些性质,着重指出它是直到10的那些数的公倍数(但2520也是),并且如果不算5040自己,它有59个因子;这表明在柏拉图的科学院里的数学家们对于整数的分解已经具有了一些先进的知识,但不能确定有多少,是否在Eucl,VII,l-2中求两个整数的最大公因子(g-C-d,)的所谓“欧几里得辗转相除法”与应用于可能无公度的量的这个同一方法的理论(Eucl,x,2)之间原本就有一种联系?一个数学方法在不同的场合被发现了两次,并且过了长时间才认识到这两个发现本质上是相同的,这不是常常发生的吗?数学上一些重要进展也正是以这种方式出现的,
甚至在欧几里得那里,我们也找不到对于将整数分解为素数因子的唯一性的一般证明;的确,或许他已注意到此,然而他全部所做的不过是关于对任意多个给定素数的最小公倍数(1,c,m,)的一个陈述(Eucl,Ⅸ,14)罢了,最后,对于存在无限多个素数的证明(Eucl,Ⅸ,20)无疑代表了一个重大进展,但是并没有令人信服的理由表明应将此归于欧几里得或者追溯到更早的年代,与我们目的相关的是在以后的诸多世纪里欧几里得的极其广泛的传播,虽然所有原先的内容都已被清除,但从那时以来,它成为了数学家普遍可用的知识宝库。
展开
——Periodica Mathematica Hungarin (匈牙利数学期刊)
“所评论的这本书……是站在许多伟大数论作者肩膀上的,对数论所作的推论性、诠释性的轻松一瞥……在激发学习数论的热情方面,或许是独特的。”
——Mathematial Reviews (数学评论)