第0章 一些准备
0.1 几点说明
0.2 常用不等式
第1章 基础题
第2章 调整法
第3章 局部不等式法
第4章 配方法
4.1 差分配方法
4.2 其他配方法
4.3 有理化枝巧
第5章 Schur不等式与初等多项式法
5.1 Schur不等式及其拓展
5.2 初等多项式法
第6章 重要不等式法
6.1 AM-GM不等式
6.2 Cauchy—Schwarz不等式
6.3 其他的不等式
第7章 求导法
7.1 一阶导数
7.2 凹、凸函数
7.3 对称求导法
第8章 变量代换法
8.1 三角代换法
8.2 代数代换法
第9章 打破对称与分类讨论
第10章 判定定理
10.1 对称不等式的取等判定(1)的证明
10.2 判定定理的应用
10.3 拓展与展望
10.4 对称不等式的取等判定(2)
第11章 其他方法
第12章 谈谈命题
第13章 计算机方法初窥
13.1 Sehur分拆
13.2 差分代换
13.3 去根号定理
第14章 总习题
参考文献
展开